Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN research shows how infection-fighting cells interact

06.03.2006


Researchers at the University of Minnesota have identified key insights into how different types of infection-fighting T-cells survive and co-exist within the body’s immune system.



T-cells, or lymphocytes, are the body’s natural defense mechanism against infection, directly attacking foreign bodies such as bacteria and viruses. The body contains millions of different lymphocytes that fight specific infectious microbes. Research published in the March 3, 2006 issue of Science Express suggests that having a wide variety of each specific T-cell in fewer quantities leads to optimal survival and activity of these infection-fighting cells. Competition within each type of T-cell allows the body to maintain a diverse inventory of natural infection fighters.

"Without this balance, a body’s immune system will not have the desired response when faced with infection," said Marc Jenkins, professor of microbiology at the University of Minnesota and co-author of the study. "These findings could aid the development and production of vaccines and lead to further research on how the body fights specific infections, such as HIV."


Jenkins and his student, Jason Hataye, from the joint M.D./Ph.D. program at the University of Minnesota, developed a method to monitor very small numbers of specific T-cells in mice. Using this system, they found that the cells survived and activated at a significantly higher rate in mice that contained the normal amount of these T-cells, as opposed to those that were intravenously injected with 2,000 times the normal amount of that type of T-cell.

"It’s a needle in the haystack problem. We used a magnet to find the needle," said Hataye. "The ability to monitor the lifespan and survival of one specific cell type will be key to future research and understanding how these cells interact."

Liz Bryan | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>