Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Convergent evolution of molecules in electric fish

06.03.2006


Having a set of extra genes gave fish on separate continents the ability to evolve electric organs, report researchers from The University of Texas at Austin.


Weakly electric fish from South America, Sternarchorhynchus mormyrus, and Africa, Campylomormyrus phantasticus. Both fish evolved the ability to generate and sense electric fields. These two species also independently evolved curved jaws for bottom feeding. Electric discharges for each species are indicated. Images courtesy of Carl D. Hopkins and John Sullivan. Click photo above for high-resolution image of electric fish.



Dr. Harold Zakon and colleagues, in a paper recently published in Proceedings of the National Academy of Sciences, show that African and South American groups of fish independently evolved electric organs by modifying sodium channel proteins typically used in muscle contraction.

Mutations in sodium channel proteins can cause serious muscular disorders, epilepsy and heart problems in humans and other vertebrates.


“The spare gene gave [the electric fish] a little bit of evolutionary leeway,” says Zakon, professor of neurobiology. “This is really one of the first cases that the ancestral gene duplication in fish has actually been linked to a gene that has been freed up and evolving in accordance with a ‘new lifestyle.’”

Zakon and colleagues looked at two sodium channel genes in the electric organs and muscles in electric and non-electric fish. Electric fish use their electric organs, which are modified muscles, to communicate with each other and sense their environment.

The researchers found that electric fishes expressed one of the sodium channel genes in their electric organs only, while non-electric fish express both genes in their muscles.

“Most fish have both genes in the muscle, but as the new electric organ was evolving, the sodium channel—by being lost from the muscle—became devoted to the electric organ,” Zakon says. “So two times, independently, the gene has been ‘lost’ from the muscle. It’s no longer able to turn on in a cell that for millions of years it turned on in, and now it’s turning on in this new organ.”

When the research team looked at the sodium channel protein sequences, they found that some of the mutations occurred at the same or very close to sites in the protein where mutations have been shown to cause disease in humans.

“Functionally important parts of this molecule are changing in order to change the electrical discharge in the fish—changes that would be detrimental in a human muscle,” says Zakon.

Looking at the convergent evolution of sodium channels in these fish helps neurobiologists identify important parts of these proteins relevant to human health, adds Zakon.

“When natural selection is acting to cause changes in a part of a molecule, you know it’s functionally important,” he says. “Natural selection can start showing you the important parts of molecules. We took the evolutionary approach, which is very compatible with the clinical approach.”

The research team included evolutionary biologist Dr. David Hillis, graduate student Derrick Zwickl and research associate Ying Lu. For more information contact: Harold Zakon, 512-471-0194.

Lee Clippard | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>