Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A protein fragment called 12.5 kda cystatin may generate first simple test for multiple sclerosis

06.03.2006


Johns Hopkins scientists report the discovery of a protein found only in cerebrospinal fluid that they say might be useful in identifying a subgroup of patients with multiple sclerosis (MS) or identifying those at risk for the debilitating autoimmune disorder.



MS strikes over 10,000 Americans each year, most of whom are women, and causes weakness, numbness, a loss of muscle coordination, and problems with vision, speech, and bladder control. It is a disorder in which the immune system destroys myelin, the covering of nerves that helps transmit signals. Cerebrospinal fluid (CSF) is the watery fluid that surrounds and cushions the brain and spinal cord.

The federally funded Hopkins research, reported in the February issue of the Annals of Neurology, is important, the researchers say, because unlike other autoimmune diseases in which the body attacks its own tissues, MS cannot be diagnosed with a simple blood or other test.


While it is recognized that there might be several forms of MS, laboratory-based tests need to be developed to diagnose these subtypes.

"There is the possibility now that the protein we identified, 12.5 kDa cystatin, can be used to diagnose MS, perhaps in its earliest stages, and also to monitor treatment by measuring its levels in CSF," says Avindra Nath, M.D., a professor in the Department of Neurology at The Johns Hopkins University School of Medicine and lead author of the study.

Working with human CSF, the Hopkins team showed that 12.5 kDa cystatin is a breakdown product of a larger protein called cystatin C or 13.4kDa, which in turn blocks activity of some enzymes, including cathepsin B. Cathepsin B has been linked to demyelination-the destruction of the nerve sheath. The term kDa refers to Kilodalton, the weight of one molecule of a substance.

"In fact, those patients who had more of the breakdown product of 12.5 kDa cystatin also seemed to have the highest cathepsin B inhibition," Nath said.

The investigators made their finding using a sophisticated technique called SELDI-time-of-flight mass spectroscopy that can find one specific protein in a complex mixture based on its weight. They used it to examine CSF samples from 29 patients with MS or pre-MS symptoms such as numbness on one side; 27 patients with transverse myelitis, a painful inflammation of spinal cord nerves; 50 infected with the AIDS virus (which can cause nerve damage); and 27 with other neurological diseases. The Hopkins scientists analyzed CSF instead of blood samples because CSF better represents local events in the brain than does blood, according to Nath. And the high concentrations of many proteins in the blood can mask proteins that might be biomarkers for MS, he added.

The team found that the 12.5kDa fragment of cystatin C occurred in CSF samples from two-thirds of patients with MS or the pre-MS conditions. Moreover, although total cystatin C levels in MS patients were not different from control patients without the disease, patients with MS had a larger proportion of the 12.5 kDa compared to 13.4 kDa cystatin C than did other patients. Thus, the presence of the 12.5 kDa fragment might identify a subgroup of MS patients.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>