Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR researchers design chip that can improve citrus varieties

03.03.2006


GeneChip Citrus Genome Array launched by Affymetrix, Inc.


The GeneChip® Citrus Genome Array can improve citrus varieties and suggest ways to better manage them.



UC Riverside researchers, in partnership with Affymetrix, Inc., have designed a chip – the GeneChip® Citrus Genome Array – that can improve citrus varieties and suggest ways to better manage them. By helping determine which genes are turned on in a tissue of citrus – genes that are associated with taste, acidic content and disease, for example – the chip provides information useful to researchers for rectifying existing problems and making improvements to the fruit.

The citrus array will be used to develop new diagnostic tools for the improvement of citrus agriculture and post-harvest fruit handling, as well as to understand mechanisms underlying citrus diseases. Researchers will study traits pertinent to the citrus industry such as easy peeling, seedlessness, flavor components, pest and disease control, nutritional characteristics, and reproductive development.


"The citrus array helps us quickly examine a certain trait in citrus," said Mikeal Roose, a professor of genetics in the Department of Botany and Plant Sciences at UCR and a leader of the three-year research project. "For a trait posing a problem for the consumer, such as an undesirable flavor, we can identify genes associated with the trait and target these for correction to improve the flavor. The chip also helps us address citrus diseases by helping us see what happens in cells when a citrus plant is under attack from a virus. And with this chip we can better understand what happens at the cellular level when oranges are put in cold storage after they are harvested, leading eventually to better methods of storage that improve fruit flavor."

Manufactured by Affymetrix, Inc., the GeneChip® Citrus Genome Array is made up of a glass wafer on to which nearly one million different pieces of citrus DNA are deposited on a grid or microarray using methods similar to those used to produce computer chips. The glass wafer is encased in a plastic container somewhat smaller than the size of a credit card.

To use the chip, researchers purify total RNA (which reflects the genes expressed in the tissue) from plant tissue, make a copy of these molecules with a chemical tag added, and then "wash" the chip with the RNA sample. If a gene is being expressed in the tissue, its corresponding RNA will be present and bind to the complementary DNA sequences on the chip. The locations of the bound RNA have a visible signal because of the tag, rather like bright and dim pixels on a computer screen. Analysis of which pieces of DNA on the chip have signals indicates which genes are expressed in the tissue.

The chip is the first commercial citrus microarray and allows analysis of expression of more than 20,000 different genes. The array will also be used to develop a detailed genetic map of citrus that will help researchers locate many genes. The map location information will be used to make the development of new varieties more efficient.

"This industry-supported effort both added to and made use of publicly available citrus sequences to develop an entirely new tool that will benefit all citrus researchers and help sustain the citrus industry locally and worldwide," said Timothy Close, a professor of genetics at UCR and a co-leader of the project. "We owe a special thanks to colleagues in the citrus community: Abhaya Dandekar at UC Davis, Bob Shatters, Jose Chaparro and Greg McCollum at the USDA Horticultural Research Lab, and Avi Sadka at Volcani Institute in Israel for sharing the full content of their citrus sequence data.

"Other colleagues in the United States, Japan and Spain who deposited sequences to the public repository maintained by the National Center for Biotechnology Information also made valuable contributions. The use of all available public data resulted in very nice coverage of the citrus genome. We are pleased with the outcome – the initial data from the citrus GeneChip have fulfilled our highest expectations."

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>