Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new tree of life allows a closer look at the origin of species

03.03.2006


A global evolutionary map reveals new insights into our last common ancestor



In 1870 the German scientist Ernst Haeckel mapped the evolutionary relationships of plants and animals in the first ’tree of life’. Since then scientists have continuously redrawn and expanded the tree adding microorganisms and using modern molecular data, yet, many parts of the tree have remained unclear. Now a group at the European Molecular Biology Laboratory (EMBL) in Heidelberg has developed a computational method that resolves many of the open questions and produced what is likely the most accurate tree ever. The study, which appears in the current issue of the journal Science, gives some intriguing insights into the origins of bacteria and the last common universal ancestor of all life on earth today.

"DNA sequences of complete genomes provide us with a direct record of evolution", says Peer Bork, Associate Coordinator for Structural and Computational Biology at EMBL, whose group carried out the project. "For a long time the overwhelming amount of data (the human genome alone contains enough information to fill 200 telephone books) has made it very difficult to pinpoint the information needed for a high-resolution map of evolution. But our study shows how this challenge can be tackled by combining different computational methods in an automated process."


Bork’s lab specialises in the computational analysis of genomes, and recently they applied this expertise to the tree of life. Since all organisms descend from the same ancestor, they share some common genes. Francesca Ciccarelli and Tobias Doerks of Bork’s group managed to identify 31 genes with clear relatives in 191 organisms, ranging from bacteria to humans, to reconstruct their relationships.

"Even using such genes, you might get the wrong answer," says Ciccarelli. "Organisms inherit most genes from their parents, but over the course of evolution, a few have been obtained when organisms swapped genes with their neighbours in a process called horizontal gene transfer (HGT). Obviously, the latter class of genes does not tell you anything about your ancestors. The trick was to identify and exclude them from the analysis."

"This procedure drastically reduced the ’noise’ in the data, making it possible to identify as yet unknown details of early evolution," says Tobias Doerks. "For example, we now know that the first bacterium was probably a type called gram-positive and likely lived at high temperatures – suggesting that all life arose in hot environments."

The improved tree has also shed light on other research carried out by the group. Bork and colleagues are participating in projects that collect genetic material of unknown species en masse from environments such as farm soil and ocean floor. "With the new high-resolution tree in hand, it is now possible to classify genetic material from this unexplored microbial world and further our understanding of life on the planet."

Anna-Lynn Wegener | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>