Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Einstein scientists discover cause and possible treatments for hereditary movement disorder


Researchers at the Albert Einstein College of Medicine of Yeshiva University have discovered the underlying cause of a type of ataxia, hereditary disorders characterized by poor balance, loss of posture and difficulty performing rapid coordinated movement. Their work also led to a drug that significantly improved the motor coordination in mice with ataxia--a finding that could lead to better therapies for the disease. The study appears in the March issue of Nature Neuroscience and was featured in the publication’s advance online edition.

The research, led by Dr. Kamran Khodakhah, associate professor in the department of neuroscience at Einstein, focused on a type of ataxia called episodic ataxia type-2. It results from gene mutations that affect calcium channels, which are involved in releasing neurotransmitters in the brain and regulating excitability in neurons. Episodic ataxia type-2 was thought to be due to impaired transmission of neurotransmitters, but the Einstein scientists suspected that something else was going on.

They studied specialized cells in the brain’s cerebellum called Purkinje cells, which are rich in calcium channels. Purkinje cells help coordinate movement by acting as information clearinghouses: They take in sensory and other inputs relayed to them by more than 150,000 excitatory and inhibitory synaptic inputs, combine them with the cello’s own intrinsic activity or "pacemaking," and then send out the signals necessary for motor coordination.

The researchers investigated whether ataxia might be due to a reduction in the precision of the intrinsic pacemaking by Purkinje cells. Studying a number of mouse models of ataxia type-2, they found a gene-dependent loss of the precision of pacemaking in Purkinje cells, which prevented them from accurately accounting for the strength and timing of synaptic inputs when sending out signals directing muscle movement.

This loss of pacemaking precision was traced to reduced activity of calcium-activated potassium channels in Purkinje cells -- a direct consequence of the reduced activity of calcium channels in these disorders. Einstein researchers were able to remedy this problem with a drug called 1-ethyl-2-benzimidazolinone (EBIO). When EBIO was infused into the brains of ataxic mice, the mice’s motor coordination improved significantly.

"These calcium-activated potassium channels proved to be a potent therapeutic target, since chronically activating them with EBIO definitely improved the motor performance of these ataxic mice," says Dr. Khodakhah, who was senior author of the study. "We don’t really have effective treatments for these types of ataxia, so we’re hopeful that our findings will lead to drugs that will improve the lives of people with this condition."

Dr Khodakhah has established collaborations with two neurologists, Dr Joanna Jen (UCLA) and Dr Michael Strupp (Germany) to explore the potential use of similar drugs in patients. The other Einstein researchers involved in the study were Joy T. Walter, Karina Alvina, Mary D. Womack and Carolyn Chevez.

Karen Gardner | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>