Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein scientists discover cause and possible treatments for hereditary movement disorder

03.03.2006


Researchers at the Albert Einstein College of Medicine of Yeshiva University have discovered the underlying cause of a type of ataxia, hereditary disorders characterized by poor balance, loss of posture and difficulty performing rapid coordinated movement. Their work also led to a drug that significantly improved the motor coordination in mice with ataxia--a finding that could lead to better therapies for the disease. The study appears in the March issue of Nature Neuroscience and was featured in the publication’s advance online edition.



The research, led by Dr. Kamran Khodakhah, associate professor in the department of neuroscience at Einstein, focused on a type of ataxia called episodic ataxia type-2. It results from gene mutations that affect calcium channels, which are involved in releasing neurotransmitters in the brain and regulating excitability in neurons. Episodic ataxia type-2 was thought to be due to impaired transmission of neurotransmitters, but the Einstein scientists suspected that something else was going on.

They studied specialized cells in the brain’s cerebellum called Purkinje cells, which are rich in calcium channels. Purkinje cells help coordinate movement by acting as information clearinghouses: They take in sensory and other inputs relayed to them by more than 150,000 excitatory and inhibitory synaptic inputs, combine them with the cello’s own intrinsic activity or "pacemaking," and then send out the signals necessary for motor coordination.


The researchers investigated whether ataxia might be due to a reduction in the precision of the intrinsic pacemaking by Purkinje cells. Studying a number of mouse models of ataxia type-2, they found a gene-dependent loss of the precision of pacemaking in Purkinje cells, which prevented them from accurately accounting for the strength and timing of synaptic inputs when sending out signals directing muscle movement.

This loss of pacemaking precision was traced to reduced activity of calcium-activated potassium channels in Purkinje cells -- a direct consequence of the reduced activity of calcium channels in these disorders. Einstein researchers were able to remedy this problem with a drug called 1-ethyl-2-benzimidazolinone (EBIO). When EBIO was infused into the brains of ataxic mice, the mice’s motor coordination improved significantly.

"These calcium-activated potassium channels proved to be a potent therapeutic target, since chronically activating them with EBIO definitely improved the motor performance of these ataxic mice," says Dr. Khodakhah, who was senior author of the study. "We don’t really have effective treatments for these types of ataxia, so we’re hopeful that our findings will lead to drugs that will improve the lives of people with this condition."

Dr Khodakhah has established collaborations with two neurologists, Dr Joanna Jen (UCLA) and Dr Michael Strupp (Germany) to explore the potential use of similar drugs in patients. The other Einstein researchers involved in the study were Joy T. Walter, Karina Alvina, Mary D. Womack and Carolyn Chevez.

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>