Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein scientists discover cause and possible treatments for hereditary movement disorder

03.03.2006


Researchers at the Albert Einstein College of Medicine of Yeshiva University have discovered the underlying cause of a type of ataxia, hereditary disorders characterized by poor balance, loss of posture and difficulty performing rapid coordinated movement. Their work also led to a drug that significantly improved the motor coordination in mice with ataxia--a finding that could lead to better therapies for the disease. The study appears in the March issue of Nature Neuroscience and was featured in the publication’s advance online edition.



The research, led by Dr. Kamran Khodakhah, associate professor in the department of neuroscience at Einstein, focused on a type of ataxia called episodic ataxia type-2. It results from gene mutations that affect calcium channels, which are involved in releasing neurotransmitters in the brain and regulating excitability in neurons. Episodic ataxia type-2 was thought to be due to impaired transmission of neurotransmitters, but the Einstein scientists suspected that something else was going on.

They studied specialized cells in the brain’s cerebellum called Purkinje cells, which are rich in calcium channels. Purkinje cells help coordinate movement by acting as information clearinghouses: They take in sensory and other inputs relayed to them by more than 150,000 excitatory and inhibitory synaptic inputs, combine them with the cello’s own intrinsic activity or "pacemaking," and then send out the signals necessary for motor coordination.


The researchers investigated whether ataxia might be due to a reduction in the precision of the intrinsic pacemaking by Purkinje cells. Studying a number of mouse models of ataxia type-2, they found a gene-dependent loss of the precision of pacemaking in Purkinje cells, which prevented them from accurately accounting for the strength and timing of synaptic inputs when sending out signals directing muscle movement.

This loss of pacemaking precision was traced to reduced activity of calcium-activated potassium channels in Purkinje cells -- a direct consequence of the reduced activity of calcium channels in these disorders. Einstein researchers were able to remedy this problem with a drug called 1-ethyl-2-benzimidazolinone (EBIO). When EBIO was infused into the brains of ataxic mice, the mice’s motor coordination improved significantly.

"These calcium-activated potassium channels proved to be a potent therapeutic target, since chronically activating them with EBIO definitely improved the motor performance of these ataxic mice," says Dr. Khodakhah, who was senior author of the study. "We don’t really have effective treatments for these types of ataxia, so we’re hopeful that our findings will lead to drugs that will improve the lives of people with this condition."

Dr Khodakhah has established collaborations with two neurologists, Dr Joanna Jen (UCLA) and Dr Michael Strupp (Germany) to explore the potential use of similar drugs in patients. The other Einstein researchers involved in the study were Joy T. Walter, Karina Alvina, Mary D. Womack and Carolyn Chevez.

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>