Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marrow-derived stem cells deliver new cytokine to kill brain tumor cells, offer protection

02.03.2006


Attaching a recently discovered cytokine to neural stem cells derived from bone marrow, researchers at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute have developed a tool to track and kill malignant brain tumor cells and provide long-term protection against their return.



Results of an animal study are published in the March 1, 2006 issue of Cancer Research, and the researchers are now applying to regulatory agencies to translate their work into human clinical trials.

Gliomas are highly invasive tumors with poorly defined borders that intermingle with healthy brain tissue, making complete surgical removal nearly impossible. Furthermore, cells separate from the main tumor and migrate to form satellites that escape treatment and often lead to recurrence.


Researchers at the Maxine Dunitz Neurosurgical Institute documented several years ago that some neural stem cells – "immature" cells that can differentiate into central nervous system cells – have the ability to target and track glioma cells in the brain, even as they migrate. The researchers identified the mechanism that enables certain neural stem cells to develop this tracking ability and genetically engineered neural stem cells to transport several cytokines – proteins that regulate immune responses – to track down and destroy glioma cells.

In 2002, the scientists reported that they had produced central nervous system cells from stem cells derived from bone marrow. Because these stem cells originate in the bone marrow instead of the brain or fetal or embryonic tissue, there is an unlimited supply of cells that are free of ethical and tissue-rejection issues.

This study provides the first documentation that the marrow-derived stem cells possess the same tumor-tracking capability of other neural stem cells. It also includes the first report on the use of the cytokine interleukin-23 (IL-23) as a potential gene-delivered therapy against glioma.

"The paper recapitulates our previous data demonstrating that the neural stem cells – in this case from bone marrow – were able to track to the tumor very efficiently and, like a heat-seeking missile, deliver a killer depot," said John S. Yu, M.D., neurosurgeon, co-director of the Comprehensive Brain Tumor Program at the Maxine Dunitz Neurosurgical Institute, and the article’s senior author. "We obtained the stem cells from bone marrow, mirroring what we want to do clinically, which is to take bone marrow cells from a patient, make them into neural stem cells, put in the gene of interest and treat the patient."

In this case, the gene of interest produces IL-23, which appears to be very well suited for attacking gliomas. Earlier studies used IL-4, IL-12, and tumor necrosis factor related apoptosis inducing ligand (TRAIL).

"Each cytokine has unique functions. What we want to do is marry the function with the therapeutic response we want to achieve. Interleukin-23 promotes the function of dendritic cells and memory T-cells, important components in an immune response to tumor cells. The earlier cytokines produced good results, but IL-23 is even more potent," Yu said.

"Most anti-tumor gene strategies attempt to deliver genes directly to tumor cells, but gliomas are especially challenging because of their highly invasive and migratory characteristics," said Keith L. Black, M.D., director of the Maxine Dunitz Neurosurgical Institute, director of Cedars-Sinai’s Division of Neurosurgery, and co-director of the Comprehensive Brain Tumor Program. "By combining the tumor-tracking properties of bone marrow-derived neural stem cells with interleukin-23, we are able to initiate a very powerful anti-tumor response that tracks to migrating glioma islands and offers long-term protection – all of which would make this a very attractive therapeutic option."

In the animal study, bone marrow-derived neural stem-like cells (BM-NSC) genetically engineered to produce IL-23 were injected into intracranial gliomas and other areas of the brain. Treated animals survived significantly longer than those in control groups. In fact, of those receiving BM-NSC-IL-23, 60 percent survived beyond day 120 tumor-free. Only 20 percent of those treated with IL-23 that was not attached to neural stem cells survived, and no animals survived if they received neural stem cells without IL-23.

Even after additional glioma cells were injected, BM-NSC-IL-23-treated animals remained tumor free, evidence of the long-term immunity provided by IL-23’s generation of memory T-cells.

Sandy Van | EurekAlert!
Further information:
http://www.csmc.edu/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>