Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins Stop Blood-Vessel and Tumor Growth in Mice

02.03.2006


Researchers at National Jewish Medical and Research Center report in the March issue of Cancer Research that a pair of promising proteins, known as fibulins 3 and 5, slow the growth of cancer tumors in mice by preventing blood vessels from sprouting. The proteins are promising candidates for use in cancer therapy.



"Healthy humans produce fibulin proteins, which regulate cell proliferation, migration and invasion. In the past, we have seen that they are depleted in numerous metastatic cancers, and that they inhibit the formation of new blood vessels in cell culture," said William Schiemann, Ph.D., Assistant Professor in the Program in Cell Biology at National Jewish. "Our current findings show that fibulins can inhibit both tumor growth and blood-vessel formation in mice."

Tumors need nutrients and oxygen supplied by blood vessels in order to grow. They also use blood vessels to spread to other parts of the body. This process, known as metastasis, is the most lethal stage of cancer and the leading cause of cancer-related death. Fighting cancer by starving tumors of life-giving blood vessels has generated great interest in recent years.


In their most recent experiments, Dr. Schiemann and his colleagues injected a biological material, called Matrigel, into mice. The Matrigel contained a growth factor that promotes blood-vessel growth and either a control substance or fibulin 3 or fibulin 5. After seven days, researchers found that the Matrigel plugs containing either fibulin had about half as many blood vessels as did the control plugs.

The researchers then injected fibrosarcoma tumor cells into mice. The tumor cells were genetically engineered to produce either fibulin 3 or fibulin 5. Three weeks after the cells were implanted, developing tumors that produced the fibulins were approximately 24 percent to 45 percent smaller than the control tumors.

"We are thrilled that the fibulins continue to show promise as we move into animal models," said Dr. Schiemann. "We also found evidence that the fibulins work through more than one biological pathway, which suggests a very robust effect. We further expect the mice to tolerate quite large doses of the fibulins, which makes us hopeful that toxicity will not be a problem."

The researchers have not yet discovered what receptors the fibulins interact with to produce their anti-angiogenic effect. But in the current paper, they report that the fibulins alter levels of extracellular proteins involved in dissolving and remodeling the extracellular matrix, which can make way for blood-vessel growth.

Moving forward, Dr. Schiemann is working to isolate the portion of the fibulin molecules that actually binds to receptors and causes their biological effect. If they can find a small molecule capable of producing the fibulins’ effects, it would hold more promise as a viable therapy.

William Allstetter | EurekAlert!
Further information:
http://www.njc.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>