Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Habitat microstructure drives salamander metamorphosis

02.03.2006


Whether salamanders transform into their terrestrial, adult form or retain their aquatic, juvenile form depends on the nature of the streambed where they develop. A study published today in the open access journal BMC Biology reveals that the Oklahoma salamander Eurycea tynerensis metamorphoses into a more terrestrial adult form in streambeds composed of fine, tightly packed gravel but retains its juvenile, or paedomorphic, form in streambeds made of large, loosely packed particles. This study highlights how a simple difference in habitat microstructure can have a major influence on patterns of development, morphology and evolution.


Oklahoman salamander



Ronald Bonett and Paul Chippindale from the University of Texas at Arlington, Texas, USA, analysed the type, size and degree of sorting of streambed sediments for 22 populations, 11 paedomorphic and 11 metamorphic, of the plethodontid salamander E. tynerensis living on the Ozark Plateau in south-central North America.

Bonett and Chippindale’s results show that paedomorphic salamanders prevailed in streambeds made of large well-sorted gravel, whereas metamorphic salamanders were found where streambeds consisted of small, unsorted sediments. The authors found a strong negative correlation between small streambed sediments and paedomorphosis.


Bonett and Chippindale explain that large gravel creates porous streambeds with large spaces between particles, where aquatic paedomorphic salamanders can access sub-surface water during dry months. However, if these spaces are filled in by small particles, metamorphosis is the only way they can survive when surface streams dry-up.

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>