Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boston University scientists develop new application to characterize structure of DNA molecules

01.03.2006


New technique provides insight into how DNA conforms to microarray surfaces



A team of researchers from Boston University has developed a new application to enable more precise measurement of the location of a fluorescent label in a DNA layer. According to their study, published in a recent issue of Proceedings of the National Academy of Sciences, the new technique provides insight into the shape of DNA molecules attached to a surface, such as microarrays used in genomics research. Determining specific information about how surface-bound DNA molecules conform may significantly improve the efficiency of DNA hybridization and microarray technology and thus impact emerging clinical and biotechnological fields.

The technique, called spectral self-interference fluorescence microscopy (SSFM), maps the interference spectrum from a fluorophore (fluorescent molecule) label located on a layered reflecting surface into a position with sub-nanometer accuracy. "Although a number of other methods have been used to determine the structure of the DNA layer, they are not very sensitive to variations in the shape of DNA molecules," said Bennett Goldberg, professor of physics and study co-author. "Our group has developed SSFM to determine the precise measurement of the location of a fluorescent label relative to the microarray surface which provides us with specific information about the conformation of DNA molecules."


Using SSFM, the team estimated the shape of coiled single-stranded DNA, the average tilt of double-stranded DNA of different lengths, and estimated the amount of hybridization. The data provide important new proof points for the capabilities of novel optical surface analysis methods of the behavior of DNA on microarray surfaces.

"Determining DNA conformation and hybridization behavior provide the information required to move DNA interfacial applications forward," said M. Selim Unlu, electrical and computer engineering professor and study co-author. "Our research shows that locating a fluorescent label attached to a certain position within a DNA chain offers highly accurate information about the shape of DNA molecules bound to the surface of a microarray."

Additional study investigators include Dr. Lev Moiseev, electrical and computer engineering research associate; Anna K. Swan, associate professor of electrical and computer engineering; and Charles R. Cantor, professor of biomedical engineering and co-director of the Center for Advanced Biotechnology at BU.

Kira Edler | EurekAlert!
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>