Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depression model leaves mice with molecular scar

01.03.2006


In addition to triggering a depression-like social withdrawal syndrome, repeated defeat by dominant animals leaves a mouse with an enduring "molecular scar" in its brain that could help to explain why depression is so difficult to cure, suggest researchers funded by the National Institutes of Health’s (NIH) National Institute of Mental Health (NIMH).



In mice exposed to this animal model of depression, silencer molecules turned off a gene for a key protein in the brain’s hippocampus. By activating a compensatory mechanism, an antidepressant temporarily restored the animals’ sociability and the protein’s expression, but it failed to remove the silencers. A true cure for depression would likely have to target this persistent stress-induced scar, say the researchers, led by Eric Nestler, M.D., The University of Texas Southwestern Medical Center, who report on their findings online in Nature Neuroscience during the week of February 26, 2006.

"Our study provides insight into how chronic stress triggers changes in the brain that are much more long-lived than the effects of existing antidepressants," explained Nestler.


Mice exposed to aggression by a different dominant mouse daily for 10 days became socially defeated; they vigorously avoided other mice, even weeks later. Expression of a representative gene in the hippocampus, a memory hub implicated in depression, plummeted three-fold and remained suppressed for weeks. However, chronic treatment with an antidepressant (the tricyclic imipramine) restored expression of the gene for brain derived neurotrophic factor (BDNF) to normal levels and reversed the social withdrawal behavior. BDNF in the hippocampus has been linked to memory, learning and depression, but Nestler said social defeat stress probably similarly affects other genes there as well.

The researchers pinpointed how social defeat changes the BDNF gene’s internal machinery. They traced the gene expression changes to long-lasting modifications in histones, proteins that regulate the turning on-and-off of genes via a process called methylation. Methyl groups, the silencer molecules, attach themselves to the histones, turning off the gene. Notably, imipramine was unable to remove these silencer molecules, suggesting that they remained a latent source of vulnerability to future depression-like responses to stress.

Imipramine reversed the suppressed BDNF gene expression by triggering a compensatory mechanism, acetylation, in which molecular activators attach themselves to the gene and overcome the silencer molecules. Imipramine turned off an enzyme (Hdac5) that degrades the activators, allowing them to accumulate.

"The molecular scar induced by chronic stress in the hippocampus, and perhaps elsewhere in the brain, can’t be easily reversed," said Nestler. "To really cure depression, we probably need to find new treatments that can remove the silencer molecules."

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>