Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depression model leaves mice with molecular scar

01.03.2006


In addition to triggering a depression-like social withdrawal syndrome, repeated defeat by dominant animals leaves a mouse with an enduring "molecular scar" in its brain that could help to explain why depression is so difficult to cure, suggest researchers funded by the National Institutes of Health’s (NIH) National Institute of Mental Health (NIMH).



In mice exposed to this animal model of depression, silencer molecules turned off a gene for a key protein in the brain’s hippocampus. By activating a compensatory mechanism, an antidepressant temporarily restored the animals’ sociability and the protein’s expression, but it failed to remove the silencers. A true cure for depression would likely have to target this persistent stress-induced scar, say the researchers, led by Eric Nestler, M.D., The University of Texas Southwestern Medical Center, who report on their findings online in Nature Neuroscience during the week of February 26, 2006.

"Our study provides insight into how chronic stress triggers changes in the brain that are much more long-lived than the effects of existing antidepressants," explained Nestler.


Mice exposed to aggression by a different dominant mouse daily for 10 days became socially defeated; they vigorously avoided other mice, even weeks later. Expression of a representative gene in the hippocampus, a memory hub implicated in depression, plummeted three-fold and remained suppressed for weeks. However, chronic treatment with an antidepressant (the tricyclic imipramine) restored expression of the gene for brain derived neurotrophic factor (BDNF) to normal levels and reversed the social withdrawal behavior. BDNF in the hippocampus has been linked to memory, learning and depression, but Nestler said social defeat stress probably similarly affects other genes there as well.

The researchers pinpointed how social defeat changes the BDNF gene’s internal machinery. They traced the gene expression changes to long-lasting modifications in histones, proteins that regulate the turning on-and-off of genes via a process called methylation. Methyl groups, the silencer molecules, attach themselves to the histones, turning off the gene. Notably, imipramine was unable to remove these silencer molecules, suggesting that they remained a latent source of vulnerability to future depression-like responses to stress.

Imipramine reversed the suppressed BDNF gene expression by triggering a compensatory mechanism, acetylation, in which molecular activators attach themselves to the gene and overcome the silencer molecules. Imipramine turned off an enzyme (Hdac5) that degrades the activators, allowing them to accumulate.

"The molecular scar induced by chronic stress in the hippocampus, and perhaps elsewhere in the brain, can’t be easily reversed," said Nestler. "To really cure depression, we probably need to find new treatments that can remove the silencer molecules."

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>