Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use embryonic model to reprogram malignant melanoma

01.03.2006


Scientists at Northwestern University and the Stowers Institute for Medical Research have reprogrammed malignant melanoma cells to become normal melanocytes, or pigment cells, a development that may hold promise in treating of one of the deadliest forms of cancer.



A report describing the group’s research was published in the Feb. 27 online edition of the Proceedings of the National Academy of Sciences that will appear in the March 7 issue of the journal.

The experiments were conducted as a collaboration involving the laboratories of Mary J. C. Hendrix, president and scientific director of the Children’s Memorial Research Center, Northwestern University Feinberg School of Medicine, and Paul M. Kulesa, director of Imaging at the Stowers Institute for Medical Research in Kansas City, Mo.


Hendrix is professor of pediatrics at the Feinberg School and a member of the executive committees of The Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The study demonstrated the ability of malignant melanoma cells to respond to embryonic environmental cues in a chick model -- in a manner similar to neural crest cells, the cell type from which melanocytes originate -- inducing malignant cells express genes associated with a normal melanocyte.

The researchers also showed that the malignant melanoma cells lost their tumor-causing ability as they became reprogrammed by the embryonic microenvironment to assume a more normal melanocyte-like cell type.

"Using this innovative approach, further investigation of the cellular and molecular interactions within the tumor cell embryonic chick microenviroment should allow us to identify and test potential candidate molecules to control and reprogram metastatic melanoma cells," Hendrix said.

Neural crest cells give rise to pigment cells as well as bone and cartilage, neurons and other cells of the nervous system. During embryonic development, neural crest cells display "invasive" behavior, similar to metastatic cancer cells, migrating from the neural tube (which becomes the brain and spinal cord) to form tissues along specific pathways.

Kulesa’s laboratory transplanted adult human metastatic melanoma cells, isolated and characterized by the Hendrix laboratory group, into the neural tube of chick embryos.

The transplanted melanoma cells did not form tumors.

Rather, like neural crest cells, the melanoma cells invaded surrounding chick tissues in a programmed manner, distributing along the neural-crest-cell migratory pathways throughout the chick embryo.

The investigators found that a subpopulation of the invading melanoma cells produced markers indicative of skin cells and neurons that had not been present at the time of transplantation.

Taken together, results of this study suggest that human metastatic melanoma cells respond to and are influenced by the chick embryonic neural-crest-rich microenvironment, which may hold promise for the development of new therapeutic strategies, the researchers said.

"This idea was pioneered 30 years ago by scientists who thought that the complex signals within an embryonic field may reprogram an adult metastatic cancer cell introduced into such an environment and cause it to contribute in a positive way to an embryonic structure," Kulesa said.

"Today, we have advanced imaging and molecular techniques that allow us to pose the same questions within an intact chick embryo and directly study the molecular signals involved in the reprogramming. The ancestral relationship between melanoma and the neural crest provides a wonderful bridge between developmental and cancer biology," Kulesa said.

One of the hallmarks of aggressive cancer cells, including malignant melanoma, is their unspecified, plastic nature, which is similar to that of embryonic stem cells.

The Hendrix lab has shown that the unspecified or poorly differentiated cell type serves as an advantage to cancer cells by enhancing their ability to migrate, invade and metastasize virtually undetected by the immune system.

Also collaborating on this research were Jennifer C. Kasemeier and Jessica Teddy, Stowers Institute; and Naira V. Margaryan; Elisabeth A. Seftor; and Richard E. B. Seftor, Children’s Memorial Research Center.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>