Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use embryonic model to reprogram malignant melanoma

01.03.2006


Scientists at Northwestern University and the Stowers Institute for Medical Research have reprogrammed malignant melanoma cells to become normal melanocytes, or pigment cells, a development that may hold promise in treating of one of the deadliest forms of cancer.



A report describing the group’s research was published in the Feb. 27 online edition of the Proceedings of the National Academy of Sciences that will appear in the March 7 issue of the journal.

The experiments were conducted as a collaboration involving the laboratories of Mary J. C. Hendrix, president and scientific director of the Children’s Memorial Research Center, Northwestern University Feinberg School of Medicine, and Paul M. Kulesa, director of Imaging at the Stowers Institute for Medical Research in Kansas City, Mo.


Hendrix is professor of pediatrics at the Feinberg School and a member of the executive committees of The Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The study demonstrated the ability of malignant melanoma cells to respond to embryonic environmental cues in a chick model -- in a manner similar to neural crest cells, the cell type from which melanocytes originate -- inducing malignant cells express genes associated with a normal melanocyte.

The researchers also showed that the malignant melanoma cells lost their tumor-causing ability as they became reprogrammed by the embryonic microenvironment to assume a more normal melanocyte-like cell type.

"Using this innovative approach, further investigation of the cellular and molecular interactions within the tumor cell embryonic chick microenviroment should allow us to identify and test potential candidate molecules to control and reprogram metastatic melanoma cells," Hendrix said.

Neural crest cells give rise to pigment cells as well as bone and cartilage, neurons and other cells of the nervous system. During embryonic development, neural crest cells display "invasive" behavior, similar to metastatic cancer cells, migrating from the neural tube (which becomes the brain and spinal cord) to form tissues along specific pathways.

Kulesa’s laboratory transplanted adult human metastatic melanoma cells, isolated and characterized by the Hendrix laboratory group, into the neural tube of chick embryos.

The transplanted melanoma cells did not form tumors.

Rather, like neural crest cells, the melanoma cells invaded surrounding chick tissues in a programmed manner, distributing along the neural-crest-cell migratory pathways throughout the chick embryo.

The investigators found that a subpopulation of the invading melanoma cells produced markers indicative of skin cells and neurons that had not been present at the time of transplantation.

Taken together, results of this study suggest that human metastatic melanoma cells respond to and are influenced by the chick embryonic neural-crest-rich microenvironment, which may hold promise for the development of new therapeutic strategies, the researchers said.

"This idea was pioneered 30 years ago by scientists who thought that the complex signals within an embryonic field may reprogram an adult metastatic cancer cell introduced into such an environment and cause it to contribute in a positive way to an embryonic structure," Kulesa said.

"Today, we have advanced imaging and molecular techniques that allow us to pose the same questions within an intact chick embryo and directly study the molecular signals involved in the reprogramming. The ancestral relationship between melanoma and the neural crest provides a wonderful bridge between developmental and cancer biology," Kulesa said.

One of the hallmarks of aggressive cancer cells, including malignant melanoma, is their unspecified, plastic nature, which is similar to that of embryonic stem cells.

The Hendrix lab has shown that the unspecified or poorly differentiated cell type serves as an advantage to cancer cells by enhancing their ability to migrate, invade and metastasize virtually undetected by the immune system.

Also collaborating on this research were Jennifer C. Kasemeier and Jessica Teddy, Stowers Institute; and Naira V. Margaryan; Elisabeth A. Seftor; and Richard E. B. Seftor, Children’s Memorial Research Center.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>