Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR Researchers Unlock New Information About How Cells Determine Their Functions

01.03.2006


Biochemistry Professor Frank Sauer and colleagues uncover new information about how embryonic fruit fly cells differentiate, a process that may advance cancer and stem-cell research.


At left is a schematic showing how the Ash1 epigenetic activator interacts with the DNA of the fruit fly drosophila. At right is Ultrabithorax expression in the fruit fly wing.



Researchers at the University of California, Riverside have discovered a molecular mechanism that directs the fate and function of cells during animal development. The findings could hold promise for the advancement of cancer and stem-cell research.

The research is published in the Feb. 24 edition of the journal Science. UCR Biochemistry Professor Frank Sauer, with German colleague Elisabeth Kremmer of the Institut für Molekulare Immunologie in Munich, and fellow UCR researchers Tilman Sanchez-Elsner and Dawei Gou authored the paper titled, Noncoding RNAs of Trithorax Response Elements Recruit Dosphila Ash1 to Ultrabithorax.


The paper explains how proteins, known as epigenetic activators (such as Ash1 from the fruit fly Drosophila), bind to their target DNA and activate genes that determine what function a cell will have in the body.

“The fact that these epigenetic activators, such as Ash1, turn on the expression of specific target genes has been known for some time. However, the mechanisms by which epigenetic activators recognize and bind these target genes was not yet known” Sauer pointed out.

“What we were able to show is that the epigenetic activator Ash1is recruited to a target gene through cell-type specific non-coding RNA” he said.

The paper examined how the activator Ash1 binds to target DNA elements, known as Trithorax-reponse elements (TREs), located in the gene Ultrabithorax (Ubx). Non-coding RNA is produced by and retained at the TREs of Ubx, and helps activate the expression of the Ubx gene by attracting Ash1 to the TREs. The transgenic transcription of non-coding TRE RNA can change the type and function of cells.

“As a result, we can now use non-coding RNAs as tools to actively determine cell fate,” Sauer said.

“Over the last few years, researchers have focused on how noncoding RNAs silence genes,” said Anthony Carter, of the National Institute of General Medical Sciences, which partially funded the research. “Dr. Sauer’s work has revealed that noncoding RNAs have a broader range of functions than was previously known, and suggests a model for how they can help activate, rather than silence, a key regulator of animal development.”

The research was funded in part through the National Institute of General Medical Sciences at the National Institutes of Health in Bethesda, Md, the Volkswagen Stiftung of Hannover, Germany, Deutsche Forschungsgenmeinschaft (DFG) Transregio 5 and a Postdoctoral fellowship from the (DFG).

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>