Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient DNA helps UF researchers unearth potential hemophilia therapy

01.03.2006


A cut can be life-threatening for people with hemophilia, whose bodies don’t produce enough of a protein that prevents prolonged bleeding.



Now University of Florida researchers may be one step closer to finding a safe way to spur production of this missing protein in patients with the most common form of the hereditary bleeding disorder. Using a dormant strand of DNA that has quietly existed in fish for millions of years, the researchers replaced the faulty gene responsible for the disease in neonatal mice, according to findings published online this month in the journal Molecular Therapy.

"The degree to which these patients have problems from hemophilia stems from how much of this protein, factor VIII, is missing," said Bradley Fletcher, M.D., Ph.D., a UF assistant professor of pharmacology and one of the lead authors of the study. "If they have very low levels of it, they have lifelong problems of bleeding, but what’s even more problematic for them is they bleed into their joints, knees, hips and ankles, which limits their mobility."


Although hemophiliac mice don’t develop some of these more extreme symptoms of the disease, gene therapy prevented profuse bleeding in the animals, the findings show.

More than 18,000 Americans, nearly all men, have hemophilia A, the most common form of the disease, according to the Centers for Disease Control and Prevention. Currently, the only safe treatment for the disorder is a purified form of the protein, but it can cost patients thousands of dollars and its effects don’t last long. Scientists have been trying to find a safe way to perform gene therapy in hemophilia patients for years, but problems with the viruses typically used to transport needed genes to their target destinations have stymied their success, Fletcher said.

Researchers usually hide corrective genes inside viruses, which then infect cells. Without the virus to act as a key, the gene would be unable to enter the cell. But viral gene therapy has been associated with medical complications, and a few human patients have died as a result.

Instead, UF researchers used a novel nonviral approach, employing a strand of DNA present in modern-day fish called a transposon to transport the gene directly into the DNA of the mice. Nonviral therapy is thought to be safer, Fletcher said.

Transposons have the natural ability to bounce to different positions in DNA, allowing them to chauffeur genes into the cell. The transposon UF researchers used is one of a few that work in mammals, but until University of Minnesota scientists discovered it in 1997, it had remained hidden in the DNA of fish like trout for 15 million years. Years of mutations in the genetic code had buried the transposon, silencing its ability to issue molecular marching orders.

Fletcher and researchers Li Liu, M.D., Ph.D., an adjunct postdoctoral associate in the department of pharmacology and therapeutics, and Cathryn Mah, a UF assistant professor of pediatric cellular and molecular therapy, used the transposon to inject the gene into endothelial cells, which line blood vessels and other parts of the body. This was unique, Fletcher said, because the liver is generally considered the body’s powerhouse for producing the protein needed to keep hemophilia at bay. The study showed that these endothelial cells also can produce enough protein to correct the problem, he said.

"I think endothelial cells are potentially a very important cell to make factor VIII," said Katherine P. Ponder, M.D., an associate professor of medicine and a hemophilia researcher at Washington University in St. Louis. "They’re a very attractive cell type to express it."

It also was the first time researchers attempted such an approach on an animal so young. In adult mice, the immune system normally views clotting protein as an invader and rejects it after traditional gene therapy. But UF researchers bypassed this immune response by performing gene therapy on mice within 24 hours of their birth, when their immune systems were still naive and would accept the protein.

This type of approach cannot be used in human babies yet because doctors have no way of gauging how severe hemophilia is in newborns. Patients with mild disease will have fewer problems and the benefits of gene therapy may not outweigh risks to the baby, Fletcher said.

Ponder said she thinks the technique also may prove to share some of the same problems as viral-based gene therapy, potentially activating cells that cause cancer.

Now UF researchers are studying different ways to use the transposon and trying to find a way to overcome the immune attack when performing gene therapy on adult animals.

"I don’t think the research is done," Mah said. "But this is definitely a step forward for hemophilia gene therapy."

April Frawley Birdwell | EurekAlert!
Further information:
http://www.health.ufl.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>