Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient DNA helps UF researchers unearth potential hemophilia therapy

01.03.2006


A cut can be life-threatening for people with hemophilia, whose bodies don’t produce enough of a protein that prevents prolonged bleeding.



Now University of Florida researchers may be one step closer to finding a safe way to spur production of this missing protein in patients with the most common form of the hereditary bleeding disorder. Using a dormant strand of DNA that has quietly existed in fish for millions of years, the researchers replaced the faulty gene responsible for the disease in neonatal mice, according to findings published online this month in the journal Molecular Therapy.

"The degree to which these patients have problems from hemophilia stems from how much of this protein, factor VIII, is missing," said Bradley Fletcher, M.D., Ph.D., a UF assistant professor of pharmacology and one of the lead authors of the study. "If they have very low levels of it, they have lifelong problems of bleeding, but what’s even more problematic for them is they bleed into their joints, knees, hips and ankles, which limits their mobility."


Although hemophiliac mice don’t develop some of these more extreme symptoms of the disease, gene therapy prevented profuse bleeding in the animals, the findings show.

More than 18,000 Americans, nearly all men, have hemophilia A, the most common form of the disease, according to the Centers for Disease Control and Prevention. Currently, the only safe treatment for the disorder is a purified form of the protein, but it can cost patients thousands of dollars and its effects don’t last long. Scientists have been trying to find a safe way to perform gene therapy in hemophilia patients for years, but problems with the viruses typically used to transport needed genes to their target destinations have stymied their success, Fletcher said.

Researchers usually hide corrective genes inside viruses, which then infect cells. Without the virus to act as a key, the gene would be unable to enter the cell. But viral gene therapy has been associated with medical complications, and a few human patients have died as a result.

Instead, UF researchers used a novel nonviral approach, employing a strand of DNA present in modern-day fish called a transposon to transport the gene directly into the DNA of the mice. Nonviral therapy is thought to be safer, Fletcher said.

Transposons have the natural ability to bounce to different positions in DNA, allowing them to chauffeur genes into the cell. The transposon UF researchers used is one of a few that work in mammals, but until University of Minnesota scientists discovered it in 1997, it had remained hidden in the DNA of fish like trout for 15 million years. Years of mutations in the genetic code had buried the transposon, silencing its ability to issue molecular marching orders.

Fletcher and researchers Li Liu, M.D., Ph.D., an adjunct postdoctoral associate in the department of pharmacology and therapeutics, and Cathryn Mah, a UF assistant professor of pediatric cellular and molecular therapy, used the transposon to inject the gene into endothelial cells, which line blood vessels and other parts of the body. This was unique, Fletcher said, because the liver is generally considered the body’s powerhouse for producing the protein needed to keep hemophilia at bay. The study showed that these endothelial cells also can produce enough protein to correct the problem, he said.

"I think endothelial cells are potentially a very important cell to make factor VIII," said Katherine P. Ponder, M.D., an associate professor of medicine and a hemophilia researcher at Washington University in St. Louis. "They’re a very attractive cell type to express it."

It also was the first time researchers attempted such an approach on an animal so young. In adult mice, the immune system normally views clotting protein as an invader and rejects it after traditional gene therapy. But UF researchers bypassed this immune response by performing gene therapy on mice within 24 hours of their birth, when their immune systems were still naive and would accept the protein.

This type of approach cannot be used in human babies yet because doctors have no way of gauging how severe hemophilia is in newborns. Patients with mild disease will have fewer problems and the benefits of gene therapy may not outweigh risks to the baby, Fletcher said.

Ponder said she thinks the technique also may prove to share some of the same problems as viral-based gene therapy, potentially activating cells that cause cancer.

Now UF researchers are studying different ways to use the transposon and trying to find a way to overcome the immune attack when performing gene therapy on adult animals.

"I don’t think the research is done," Mah said. "But this is definitely a step forward for hemophilia gene therapy."

April Frawley Birdwell | EurekAlert!
Further information:
http://www.health.ufl.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>