Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty immune-priming cells start autoimmunity

28.02.2006


The failure of programming that sparks the death of dendritic cells – those that activate the immune system – can initiate autoimmune disease, said researchers from Baylor College of Medicine in a report that appears in the current issue of the journal Science.



The problem begins with a process called programmed cell death or apoptosis, said Dr. Jin Wang, assistant professor of immunology at Baylor College of Medicine. Mice bred to have a defect in apoptosis of their dendritic cells went on to develop autoimmune disease, he said.

"This suggests that defective apoptosis of dendritic cells can be a critical component of autoimmune diseases," said Wang.


Autoimmune diseases, such as juvenile diabetes and lupus, result when the immune system begins attacking the body’s own tissues rather than foreign bodies.

"We knew that autoimmunity in general can be caused when dendritic cells are unchecked, either by programmed cell death or overactivation," said Wang.

"Dendritic cells are the initiators of immunity," said Wang.

They do this by showing or presenting foreign antigens from invading bacteria or viruses to the immune system, which then activates lymphocytes to attack.

Previously, many people thought autoimmunity occurred through apoptosis because of accumulating lymphocytes or white blood cells– key elements of the immune system.

"If they didn’t die, we thought they would start to accumulate and do damage to the body’s own tissues," he said. However, at least eight studies that suppressed programmed cell death in lymphocytes did not induce autoimmune disease in animals.

In the future, Wang said, he and his colleagues plan to fill in the gaps between what happens when apoptosis is hindered in the dendritic cells and the occurrence of autoimmune disease.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>