Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes researchers pioneer islet cell xenotransplantation in primate studies

27.02.2006


A team of researchers from the University of Alberta, the Yerkes National Primate Research Center of Emory University and the Emory Transplant Center has successfully transplanted insulin-producing neonatal porcine islet cells into monkeys, a procedure the researchers say represents a promising intermediate solution to the critical supply problem in clinical islet cell transplantation.



"Our work at the U of A and Emory, along with recent work at the University of Minnesota, is very exciting and shows that xenotransplantation in humans may soon be possible, thus solving the islet supply problem," says one of the study authors Ray Rajotte, a professor of Surgery at the University of Alberta.

The paper appeared in an advanced on-line publication of Nature Medicine, February 26, entitled "Long-term survival of neonatal porcine islets in non-human primates by targeting co-stimulation pathways." The work follows on the heels of similar work published last week by University of Minnesota researchers; those researchers used islets isolated from adult pig pancreases.


Neonatal islets were produced in Edmonton using a procedure Drs. Greg Korbutt and Rajotte developed in 1995. The pig islets were sent to the Yerkes Research Center for transplantation into diabetic rhesus macaques using an anti-rejection protocol developed by Drs. Christian Larsen and Kenneth Cardona of the Yerkes Research Center and the Emory Transplant Center. The isolation method developed by the U of A researchers is simple and reproducible with the neonatal pig islets having some growth potential post-transplant, considered a major advantage over adult pig islets.

The diabetic animals were treated with a CD28/CD154 co-stimulation blockade-based immunosuppressive regimen, and achieved sustained insulin independence (median survival >140 days with one animal now at 300 days) without evidence of porcine endogenous retrovirus (PERV) dissemination. "This represents a major step forward and proves neonatal porcine islets can correct diabetes long-term in primates," said Drs. Korbutt and Rajotte.

"To meet the needs of the millions suffering from type 1 diabetes, we must find new donor sources to allow large-scale application of islet cell transplantation in humans," said Dr. Larsen. "While there is much work to be done these studies suggest that the rejection response to porcine islets can be surmounted."

"The next step is to prove that these neonatal porcine islet cells could become a source for human transplantation," said Dr. Rajotte. "It’s hoped that within the next three to five years, we will be transplanting patients with pig islets once we prove that it is safe."

Using a relatively simple and reproducible method of obtaining large numbers of islets from neonatal pig pancreata developed at the U of A, the researchers then transplanted islets comprised of endocrine and endocrine precursor cells into the monkeys. In vivo, these cells have been shown to proliferate, differentiate and reverse hyperglycemia in immunodeficient diabetic mice and allogeneic out-bred pigs.

However, humans and Old World primates have naturally occurring antibodies that are directed against antigens that can cause hyperacute or acute humoral rejection. To combat that, the researchers administered an anti-IL-2 receptor and anti-CD154 (H106) antibody, while maintaining immunosuppression using sirolimus and belatacept (a second-generation high affinity derivative of CTLA4-Ig)9-11 on diabetic rhesus macaques transplanted with neonatal porcine islets.

Michael Robb | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>