Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infection ’Alarm’ Yields Clues to Immune System Behavior

24.02.2006


Drawing on lab experiments and computer studies, Johns Hopkins researchers have learned how a common protein delivers its warning message to cells when an infectious agent invades the body. The findings are important because this biological intruder alarm causes the body’s immune system to leap into action to fight the infection. Learning more about how this process works, the researchers said, could lead to better treatments for diseases that occur when the immune system overreacts or pays too little attention to the infection alarm.


When a white blood cell detects a bacterial intruder, it sounds the alarm by releasing a protein called tumor necrosis factor, or TNF. TNF sends a message from the surface of a neighboring cell to its nucleus, instructing it to activate genes to combat the infection. Inside the cell, the message is passed along the NF-kappaB pathway. Along the way, the warning message is processed by a molecule called Inhibitor of KappaB Kinase, or IKK. Diagram prepared by Raymond Cheong



Collaborating with colleagues at the University of California, San Diego, the Johns Hopkins researchers have used their discoveries to develop a new computer model that could help produce medications for immune system-related ailments including septic shock, cancer, lupus and rheumatoid arthritis.

Their findings, which focused on how a large protein molecule called tumor necrosis factor, or TNF, triggers an immune response, were reported in the February issue of the Journal of Biological Chemistry.


"We were surprised by how sensitive cells were to small amounts and brief exposures to TNF," said Andre Levchenko, a Johns Hopkins assistant professor of biomedical engineering and senior author of the paper. "Our analysis may help drug companies solve problems with the regulation of immune response levels, and do it in a smart way."

In particular, Levchenko’s team looked at the innate immune response, a localized reaction which normally stops an infection threat confined to a small part of the body, such as in the case of a pricked finger. (This is in contrast to a systemic response that triggers an immune reaction throughout the body, causing a fever. If the immune system responds too aggressively in such cases, the result may be a dangerous condition called septic shock.)

The innate immune response begins when white blood cells detect a bacterial intruder or toxin in the body. They produce TNF to carry a message about this health threat to neighboring blood vessel cells, asking them to join in the fight. To send this message, a TNF molecule latches onto the surface of a neighboring cell and accesses a biological information highway called the NF-kappaB pathway. Via a series of chemical reactions that act like signals traveling over a telephone wire, TNF’s message moves along this pathway from the cell’s surface to its nucleus.

At the end of this pathway, NF-kappaB molecules are released to carry the alarm into the nucleus, the cell’s control center. Inside the nucleus, the NF-kappaB molecules switch on genes that produce infection-fighting proteins. These proteins launch several strategies to fight the microscopic invaders, such as sending more white blood cells to engulf the bacteria or toxins. The proteins also set off a response known as inflammation, characterized by redness, swelling and pain.

In their journal article, Levchenko and his colleagues reported several important new discoveries about this cellular signaling system. "You could think of the TNF molecule, which sounds the alarm, as a very weak radio transmitter. It moves very slowly as it carries its warning message to neighboring cells, so it is unable to send that message over long distances," Levchenko said. "However, we discovered that the cellular pathways that pick up this signal act like extremely sensitive radio receivers. They can pick up the alarm message from exposure to even a very small amount of TNF. This turns out to be a very smart strategy on the part of the cells."

He explained that a pricked finger usually generates a very localized fight against infection, involving only nearby cells. If TNF’s signal was strong enough to set off an immune response involving the entire body, the result could be a high fever and septic shock. "We’ve developed a better understanding of why the fight against a local infection stays local," said Raymond Cheong, a graduate student in Levchenko’s lab and lead author of the journal article.

The researchers also found that as TNF’s warning message travels from the surface of a cell to its nucleus, it receives critical help from a molecule called Inhibitor of KappaB Kinase, or IKK. "IKK filters and interprets the warning message," said Cheong, who is an M.D.-Ph.D. candidate in the Johns Hopkins School of Medicine. "It carefully controls the level of the immune system’s response."

That makes IKK a very promising target for new medications designed to boost or suppress the immune system, the researchers said. An overactive immune system, for example, can set off the excessive inflammation associated with rheumatoid arthritis and lupus. In addition, some cancers are more likely to grow where inflammation occurs. These ailments might be helped by a drug that curbs inflammation by reducing the sensitivity of IKK. Still other diseases that are characterized by a weak inflammatory response might be helped by a drug that makes IKK even more sensitive to infection messages.

The researchers believe their computer model of this cellular alarm system, which was refined through lab testing, should be a great help to medication makers. "Models like this are a wonderful tool for experimental drug testing," Levchenko said. Funding for the research was provided by the National Institutes of Health and the Medical Scientist Training Program at The Johns Hopkins University. Co-authors of the journal article included Adriel Bergmann, a graduate student in the Department of Biomedical Engineering at Johns Hopkins; and Shannon L. Werner, Joshua Regal and Alexander Hoffman, all of the Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Porous crystalline materials: TU Graz researcher shows method for controlled growth

07.12.2016 | Materials Sciences

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>