Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rochester Scientists Develop Fast-Working Biosensor

24.02.2006



University of Rochester Medical Center scientists have demonstrated a new technology that accurately and rapidly detects the meat-spoiling and sometimes dangerous E. coli bacteria.

The unique technology uses a protein from the suspect bacteria as part of the sensing system that also includes a silicon chip and a digital camera.

The journal Biosensors and Bioelectronics published an article on the technology in its February issue. Benjamin Miller, Ph.D., an associate professor of dermatology at the Medical Center, is the lead author of the article.



“We’ve developed a very inexpensive technology that can detect an infectious agent,” said Miller, who is part of the university’s Center for Future Health “It’s clearly faster and cheaper than any competing technology. This is another step on the way to point-of-care diagnostics.”

The technology potentially could detect any biological entity, Miller said. A physician someday, for example, could use the technology in his office to confirm a streptococcal infection in a patient with a sore throat.

The Rochester research team calls the technology “arrayed imaging reflectometry.” The system utilizes a silicon chip that is made so that laser light reflected off the chip is invisible unless the target bacteria are present.

The target described in the Biosensors and Bioelectronics article is the bacteria Escherichia coli.

A protein from the bacteria, Translocated Intimin Receptor or Tir, is placed on the chip. The Tir can be seen as a “molecular harpoon,” Miller said. The E. coli sends out the harpoon into a cell. Once it is in the cell, the Tir then binds with an E. coli protein called Intimin. A similar process occurs between the Tir placed on the chip and any E. coli in the sample being tested. The binding of the probe and the bacteria alters the surface of the chip. A digital camera image of the chip captures the changes for analysis and confirmation of detection.

Traditional methods of detection of bacteria can take days. “This takes as much time as it takes for a snapshot,” Miller said.

The scientists currently are defining the sensitivity levels of the technology, previously called reflective interferometry, and extending the system to other biological targets.

In addition to Miller, the authors of the journal article include Lewis J. Rothberg, professor of chemistry and member of the Center for Future Health, Scott R. Horner, who earned a doctorate in biophysics at the University of Rochester, and Charles R. Mace, a University of Rochester doctoral student in biophysics.

Pathologics, a Rochester area start-up company, was launched to further develop and commercialize the technology. Miller, Rothberg and Horner have a financial interest in the company. Horner is chief technical officer at Pathologics.

Research for the work was supported by grants from the U.S. Department of Energy and the National Institutes of Health.

For more media inquiries, contact:
Michael Wentzel
(585) 275-1309
michael_wentzel@urmc.rochester.edu

Michael Wentzel | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>