Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF scientists reveal ancient origin of vertebrate skeleton

24.02.2006


Unlovable lamprey holds clues to skeletal evolution



University of Florida scientists have found that people have an ancient skeleton in their closets - a skeleton personified today by a jawless, eel-like fish. It turns out lampreys, long thought to have taken a different evolutionary road than almost all other backboned animals, may not be so different after all, especially in terms of the genetics that govern their skeletal development, according to findings to be published online this week in the Proceedings of the National Academy of Sciences.

UF scientists found the same essential protein that builds cartilage in this odd animal - it spends the first five years of its development in the larval stage before it finally morphs into a boneless fish - is none other than collagen. This vital structural molecule is found in all vertebrates with backbones and jaws, including humans.


"It was thought collagen was a relatively recent invention in vertebrate evolution that unites us with reptiles, amphibians, sharks and bony fishes, while the lamprey skeleton was based on quite different proteins," said Martin Cohn, Ph.D., a developmental biologist and associate professor with the UF departments of zoology and anatomy and cell biology. "Knowing that lampreys also use collagen to build their skeletons makes sense. Lampreys and jawed vertebrates inherited the same genetic program for skeletal development from our common ancestor."

Lampreys live today in the Great Lakes and other freshwater bodies that connect to the sea. But they are considered a nuisance, largely because of their unsettling appearance and demeanor - picture a leech longer than your forearm with a rasp-like mouth that flares open at the end of its body.

Still, the lamprey and its cousin, the hagfish, offer insight into the early Cambrian period 540 million years ago, when multicellular animals first began to make shell and other hard body parts. About 40 million years into the process, jawed and jawless vertebrates branched into different paths from the starting point, like the two ascending lines in the letter "V."

"The lamprey is like the great-, great-, great-aunt descended from the earliest backboned animal," said Michael Miyamoto, Ph.D., a professor and associate chairman of UF’s zoology department. "Our question was whether the earliest vertebrates used a collagen recipe or a non-collagen recipe to form their skeletons, and by examining the lamprey, we found a shared recipe. Because of the lamprey, we know it is much more ancient genetic pathway that activates the collagen matrix."

Animal collagen, often associated with the full lips of movie stars, is used for a variety of medical purposes, including reconstructive surgery. But UF Genetics Institute researchers were interested in a material known as type II collagen - the primary structural molecule for jawed vertebrates for at least 500 million years. It is essential in the human body, forming cartilage throughout embryonic skeleton and generally serving as a framework for building bone.

With GuangJun Zhang, Ph.D., a graduate student in zoology, the research team used gene cloning and gene sequencing analysis to demonstrate two type II collagen genes are expressed during the development of the lamprey’s cartilaginous skeleton. In addition, they isolated a gene called Sox9, a regulator of collagen gene activity in vertebrates.

The results indicate the collagen-based skeleton evolved before the jawed and jawless vertebrates split into different paths, not afterward. In addition, the research shows that scientists have to dig beyond bone and cartilage to unravel vertebrate relationships, according to Michael Caldwell, Ph.D., an associate professor of earth and atmospheric sciences and of biological sciences at the University of Alberta.

"One of the classic characters in the scientific literature for the past 100 years that has been argued to link all vertebrates, to the exclusion of lampreys and hagfishes, is bone, pure and simple," Caldwell said. "It is the lack of bone in these animals and the supposed uniqueness of their cartilage, that has for so long plagued scientists in their attempts to place them in the evolutionary scheme. An entire taxonomy was created for animals that basically have a head at one end and cartilage to hold it together, but no bone. But this work says the common feature of vertebrates is not the presence or absence of bone, but the presence of a shared gene system that produces cartilage. This conclusion is illuminating and extremely important."

John Pastor | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>