Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmonella bacteria sequenced

25.10.2001


Salmonella: two sequences are better than one
© SPL


Bugs behind typhoid and food poisoning give up genetic secrets.

Two teams have sequenced the genomes of two Salmonella bacteria. One is responsible for typhoid; the other causes food poisoning.

The genomes should lead to new ways to diagnose, treat and vaccinate against both diseases. Comparing the sequences should also clarify why the closely related bugs behave quite differently.



The two strains are called Typhi and Typhimurium. Typhi, the typhoid bug, infects only humans, attacking the liver, spleen and bone marrow. Gut-dwelling Typhimurium, a major cause of salmonella food poisoning, is much less fussy about where it sets up home. "It infects just about anything that walks or crawls on the face of the earth," says microbiologist Stanley Maloy of the University of Illinois at Urbana-Champaign.

Fatal flaw

Typhoid infects 16 million people each year and kills 600,000. Drug resistance is making matters worse. The Typhi team sequenced a strain from Vietnam that is resistant to several antibiotics.

The genome data should improve diagnostic tools, says team member Gordon Dougan of Imperial College, London. Typhoid is hard to diagnose because its symptoms resemble those of other diseases, including malaria and dengue fever, and the bug is difficult to recognize.

Typhoid vaccines are not fully reliable, and are not included in infant vaccination programmes. "We need another step in vaccine progress," says Dougan.

The rewards for such a step could be great. "If we could block its transmission in humans, we could eradicate it altogether - it’s got nowhere else to go," says Julian Parkhill of the Sanger Centre in Cambridge, UK, leader of the Typhi genome project. Relying on human hosts has painted Typhi into an evolutionary corner.

Typhi’s genome gives a strong hint about its narrow tastes. The bacterium has more than 200 ’pseudogenes’ - once-functional stretches of DNA that have been inactivated by mutation. Working versions of these genes were discarded during Typhi’s evolution for its current habitat.

The more flexible Typhimurium, which presumably requires a bigger biological toolkit, has about 40 pseudogenes. Each bug also has hundreds of genes that are not found in the other. "For two organisms that are classified as a single species, the amount of difference is quite a surprise," says Parkhill.

Problem and solution

Typhimurium has a less alarming public image, but is a bigger health problem than typhoid, says Michael McClelland of the Sidney Kimmel Cancer Center in San Diego, California, who led the project to sequence Typhimurium.

"It’s thought to be at least 30-fold underreported. There are probably hundreds of millions of cases every year in the world," says McClelland. He adds that gut-dwelling Salmonella may kill twice as many people - mostly infants and the elderly - as typhoid.

Typhimurium’s sequence reveals 50 previously unknown genes that code for proteins on its surface. These are potential vaccine or drug targets.

The bug is a tool as well as a menace. Weakened versions are used to deliver vaccines and cancer drugs. In mice, Typhimurium’s symptoms are very similar to human typhoid, making it a laboratory favourite for salmonella research.

The team behind the Typhimurium genome has designed microchips to identify the genes that the organism switches on in different situations. These might explain how the bug lives in different hosts, and why it has different effects on humans and mice.

"It’s a double-whammy - we can design therapies and study Salmonella’s evolution," says Typhimurium team member Sandra Clifton of Washington University in St Louis, Missouri.

There are more than 2,000 recognized strains of Salmonella enterica, with a wide variety of hosts and disease-causing capabilities. The genomes of several more strains are in the pipeline - comparisons between types "will provide the very best clues as to how [host switches] can happen in bacteria", says Maloy.

References
  1. Parkhill, J. et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848 - 852, (2001).

  2. McClelland, M. et al. The complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413, 852 - 856, (2001).


John Whitfield | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-10.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>