Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmonella bacteria sequenced

25.10.2001


Salmonella: two sequences are better than one
© SPL


Bugs behind typhoid and food poisoning give up genetic secrets.

Two teams have sequenced the genomes of two Salmonella bacteria. One is responsible for typhoid; the other causes food poisoning.

The genomes should lead to new ways to diagnose, treat and vaccinate against both diseases. Comparing the sequences should also clarify why the closely related bugs behave quite differently.



The two strains are called Typhi and Typhimurium. Typhi, the typhoid bug, infects only humans, attacking the liver, spleen and bone marrow. Gut-dwelling Typhimurium, a major cause of salmonella food poisoning, is much less fussy about where it sets up home. "It infects just about anything that walks or crawls on the face of the earth," says microbiologist Stanley Maloy of the University of Illinois at Urbana-Champaign.

Fatal flaw

Typhoid infects 16 million people each year and kills 600,000. Drug resistance is making matters worse. The Typhi team sequenced a strain from Vietnam that is resistant to several antibiotics.

The genome data should improve diagnostic tools, says team member Gordon Dougan of Imperial College, London. Typhoid is hard to diagnose because its symptoms resemble those of other diseases, including malaria and dengue fever, and the bug is difficult to recognize.

Typhoid vaccines are not fully reliable, and are not included in infant vaccination programmes. "We need another step in vaccine progress," says Dougan.

The rewards for such a step could be great. "If we could block its transmission in humans, we could eradicate it altogether - it’s got nowhere else to go," says Julian Parkhill of the Sanger Centre in Cambridge, UK, leader of the Typhi genome project. Relying on human hosts has painted Typhi into an evolutionary corner.

Typhi’s genome gives a strong hint about its narrow tastes. The bacterium has more than 200 ’pseudogenes’ - once-functional stretches of DNA that have been inactivated by mutation. Working versions of these genes were discarded during Typhi’s evolution for its current habitat.

The more flexible Typhimurium, which presumably requires a bigger biological toolkit, has about 40 pseudogenes. Each bug also has hundreds of genes that are not found in the other. "For two organisms that are classified as a single species, the amount of difference is quite a surprise," says Parkhill.

Problem and solution

Typhimurium has a less alarming public image, but is a bigger health problem than typhoid, says Michael McClelland of the Sidney Kimmel Cancer Center in San Diego, California, who led the project to sequence Typhimurium.

"It’s thought to be at least 30-fold underreported. There are probably hundreds of millions of cases every year in the world," says McClelland. He adds that gut-dwelling Salmonella may kill twice as many people - mostly infants and the elderly - as typhoid.

Typhimurium’s sequence reveals 50 previously unknown genes that code for proteins on its surface. These are potential vaccine or drug targets.

The bug is a tool as well as a menace. Weakened versions are used to deliver vaccines and cancer drugs. In mice, Typhimurium’s symptoms are very similar to human typhoid, making it a laboratory favourite for salmonella research.

The team behind the Typhimurium genome has designed microchips to identify the genes that the organism switches on in different situations. These might explain how the bug lives in different hosts, and why it has different effects on humans and mice.

"It’s a double-whammy - we can design therapies and study Salmonella’s evolution," says Typhimurium team member Sandra Clifton of Washington University in St Louis, Missouri.

There are more than 2,000 recognized strains of Salmonella enterica, with a wide variety of hosts and disease-causing capabilities. The genomes of several more strains are in the pipeline - comparisons between types "will provide the very best clues as to how [host switches] can happen in bacteria", says Maloy.

References
  1. Parkhill, J. et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848 - 852, (2001).

  2. McClelland, M. et al. The complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413, 852 - 856, (2001).


John Whitfield | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-10.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>