Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry reveals mummies’ secrets

25.10.2001


Unravelling the past: pharaonic undertakers used oils, waxes and fats.
© Trustees of the National Museums of Scotland.


Analysis has only scratched the surface of the embalmer’s art.
© Trustees of the National Museums of Scotland.


Ancient embalming not to be sniffed at.

Archaeologists thought they had mummification wrapped up. But a new analysis of ancient Egyptian embalming suggests that they have underestimated this sophisticated funerary practice.

Pharaonic undertakers used a wealth of oils, waxes and fats, say Stephen Buckley and Richard Evershed at the University of Bristol, UK. They are the first to study several mummies from different periods using modern analytical chemistry1.



"This will be an eye-opener for archaeologists and Egyptologists everywhere," says Jaap Boon, a chemist at the FOM Institute for Atomic and Molecular Physics in Amsterdam, the Netherlands.

The ancient Egyptians guarded the techniques of mummification closely. "Its sacred nature made them very protective," says Buckley. No written descriptions remain other than second-hand accounts by Greek and Roman historians. Information is also scant because the law protects mummies as rare historical artefacts and as human remains.

As modern chemistry requires only tiny samples, it does little damage to artefacts. "Curators all over the world should be excited about this," says archaeologist Sarah Wisseman of the University of Illinois in Urbana-Champaign.

The variation of ingredients used may reveal important information about the ancient Egyptian economy. Just like today, the sophistication of ancient funerals went "according to their families pocket-books", says Wisseman. And changes in embalming practices through the ages might reflect shifts in trade routes throughout the ancient world.

Hardening evidence

The duo studied 13 mummies from the XII Egyptian dynasty (1985 BC) to Roman times (30 BC onwards), when the preservation practice fell from fashion.

They found evidence of many ’drying oils’. These substances would have been liquid when applied and then self-polymerized, hardening over time. The embalmers seem to have used these oils "a bit like a ’Ronseal’ to prevent moisture from getting in," says Buckley. This waterproof coating protected mummies from the humidity of underground tombs.

The researchers also found traces of precious plant resins. Although these probably also had a spiritual or cultural significance, they are now known to contain natural antibacterial agents. So they most likely served as preservatives, Evershed argues.

Beeswax is present only in later mummies. It may have been used more frequently as its anti-bacterial properties became appreciated, says Buckley. It might not be coincidence, he suggests, that the word for wax in the Coptic language - derived from ancient Egyptian - is ’mum’.

Analysis has only scratched the surface of the embalmer’s art.
© Trustees of the National Museums of Scotland.



The Bristol researchers hope to convince other curators to make their mummies available for analysis. "I’m the first to admit that we’ve just begun to scratch the surface," says Evershed.

References
  1. Buckley, S. A. & Evershed, R. P. Organic chemistry of embalming agents in Pharaonic and Graeco-Roman mummies. Nature, 413, 837 - 841, (2001).

  2. Bahn, P. G. The making of a mummy. Nature, 356, 109, (1992).


TOM CLARKE | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-11.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>