Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry reveals mummies’ secrets

25.10.2001


Unravelling the past: pharaonic undertakers used oils, waxes and fats.
© Trustees of the National Museums of Scotland.


Analysis has only scratched the surface of the embalmer’s art.
© Trustees of the National Museums of Scotland.


Ancient embalming not to be sniffed at.

Archaeologists thought they had mummification wrapped up. But a new analysis of ancient Egyptian embalming suggests that they have underestimated this sophisticated funerary practice.

Pharaonic undertakers used a wealth of oils, waxes and fats, say Stephen Buckley and Richard Evershed at the University of Bristol, UK. They are the first to study several mummies from different periods using modern analytical chemistry1.



"This will be an eye-opener for archaeologists and Egyptologists everywhere," says Jaap Boon, a chemist at the FOM Institute for Atomic and Molecular Physics in Amsterdam, the Netherlands.

The ancient Egyptians guarded the techniques of mummification closely. "Its sacred nature made them very protective," says Buckley. No written descriptions remain other than second-hand accounts by Greek and Roman historians. Information is also scant because the law protects mummies as rare historical artefacts and as human remains.

As modern chemistry requires only tiny samples, it does little damage to artefacts. "Curators all over the world should be excited about this," says archaeologist Sarah Wisseman of the University of Illinois in Urbana-Champaign.

The variation of ingredients used may reveal important information about the ancient Egyptian economy. Just like today, the sophistication of ancient funerals went "according to their families pocket-books", says Wisseman. And changes in embalming practices through the ages might reflect shifts in trade routes throughout the ancient world.

Hardening evidence

The duo studied 13 mummies from the XII Egyptian dynasty (1985 BC) to Roman times (30 BC onwards), when the preservation practice fell from fashion.

They found evidence of many ’drying oils’. These substances would have been liquid when applied and then self-polymerized, hardening over time. The embalmers seem to have used these oils "a bit like a ’Ronseal’ to prevent moisture from getting in," says Buckley. This waterproof coating protected mummies from the humidity of underground tombs.

The researchers also found traces of precious plant resins. Although these probably also had a spiritual or cultural significance, they are now known to contain natural antibacterial agents. So they most likely served as preservatives, Evershed argues.

Beeswax is present only in later mummies. It may have been used more frequently as its anti-bacterial properties became appreciated, says Buckley. It might not be coincidence, he suggests, that the word for wax in the Coptic language - derived from ancient Egyptian - is ’mum’.

Analysis has only scratched the surface of the embalmer’s art.
© Trustees of the National Museums of Scotland.



The Bristol researchers hope to convince other curators to make their mummies available for analysis. "I’m the first to admit that we’ve just begun to scratch the surface," says Evershed.

References
  1. Buckley, S. A. & Evershed, R. P. Organic chemistry of embalming agents in Pharaonic and Graeco-Roman mummies. Nature, 413, 837 - 841, (2001).

  2. Bahn, P. G. The making of a mummy. Nature, 356, 109, (1992).


TOM CLARKE | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-11.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>