Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UVa Scientists Hot on Trail of Therapies for Deadly Lung Failure


Researchers at the University of Virginia Health System have identified a molecular target, or receptor, for potential drugs to treat acute respiratory distress syndrome (ARDS), a sudden and life-threatening failure of the lung. Interestingly, the receptor is in the same class that gives people their sense of sight, smell and taste (G-protein coupled receptors.)

In ARDS, patients cannot breathe on their own because fluid gets into the lungs. Essentially, the body’s immune system causes lung inflammation and accumulation of fluid in the air sacs, or alveoli, leading to low blood-oxygen levels. Up to 30 percent of patients in intensive care units can die from ARDS. There is no current therapy other than general life support and putting patients on a breathing machine. If they survive, many people face long-term lung problems. Common causes of ARDS are pneumonia, septic shock, trauma, or inhaling chemicals.

The receptor identified by UVa doctors is called CXCR2. It’s expressed on the endothelial cells that line the blood vessels of the lung and on inflammatory leukocytes. Using animal models, UVa doctors have found that CXCR2 attracts white blood cells called neutrophils into the lung, a key event in the early development of ARDS. CXCR2 has been characterized in the past, but the endothelial cell effects define a new role for this receptor in the body’s physiology.

“We can’t say yet that if you target this receptor you will stop ARDS,” said Klaus Ley, M.D., Ph.D., director of the cardiovascular research center at UVa. “But it is reasonable to be hopeful and to pursue this type of research that might one day translate into clinical application.” Ley is senior author on a paper describing the receptor CXCR2 in the Feb. 16, 2006 “Online First Articles” of The Journal of Clinical Investigation found on the web at

Dr. Jörg Reutershan, M.D., an anesthesiologist from Germany doing research in Ley’s lab, discovered that CXCR2 expressed on endothelial cells is involved in acute respiratory syndrome. “Our finding is that expression of this receptor is in the lung itself,” Reutershan said. “Our hope is that drug companies might be able to target the lung with an aerosol, which would have the advantage of hitting receptor without compromising the entire immune system, which is always a problem. Aerosol treatment would be a great advantage.”

The paper is titled “Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung.” 10.1172/JCI27009

Bob Beard | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>