Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology imitating life

23.02.2006


Scientists from Leicester have discovered a radical new approach to making artificial platelets to help stop bleeding in patients who have too few platelets of their own. This invention could be a major breakthrough for cancer patients suffering from severe or life threatening bleeding.



The development of this highly innovative product has been made possible thanks to a major funding round of £3.1m led by Quester, including investment from NESTA (the National Endowment for Science, Technology and the Arts), and the East Midlands Regional Venture Capitalist Fund.

As well as providing money in this funding round, NESTA has played an important role in providing vital seed finance, bridging the gap between the two rounds.


Platelets are blood cells, essential for the blood to clot. When patients suffer from platelet deficiency, blood clots cannot form properly and this can lead to life threatening bleeding. This is a particularly serious problem for patients with leukaemia and those receiving cancer therapy.

The development of the Haemostatix artificial platelets - Haemoplax - has been driven by an urgent need to find a more cost effective, safer, virus-free alternative to platelet transfusion.

The transfusion of platelets prepared from blood donations by Blood Transfusion Services is currently the only available treatment. One big drawback of this method is the potential for passing on infectious agents from donors to recipients, and recently, concerns about the potential risk of transmission of CJD (human BSE) are threatening the supply of platelets for transfusion. Platelets are also expensive to produce, have a shelf life of only five days, and need to be screened to remove the risk of transmission of blood-borne viruses that cause hepatitis and HIV.

Mark White, NESTA Invention and Innovation Director, said: “NESTA is well placed to identify innovative companies at the earliest stage of development and we are delighted to now have Quester and the East Midlands Regional Venture Capital Fund on board as co-investors. They have recognised, along with us, that Haemostatix is a classic illustration of a British firm which is successfully exploiting world-class science.”

Haemostatix, a spin-out from Leicester University, was founded in 2003 by Sarah Middleton (CEO) and Professor Alison Goodall (CSO) in conjunction with the University of Leicester which played a crucial supporting role in the company’s early stages.

Joseph Meaney | alfa
Further information:
http://www.nesta.org.uk

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>