Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find molecule that may hold key to learning and memory

22.02.2006


Independent research teams from Harvard Medical School and Children’s Hospital Boston have identified a master protein that sheds light on one of neurobiology’s biggest mysteries--how neurons change as a result of individual experiences. The research, which appears in two papers in the latest issue of Science (Feb 17), identifies a central protein that regulates the growth and pruning of neurons throughout life in response to environmental stimuli. This protein, and the molecular pathway it guides, could help investigators understand the process of learning and memory, as well as lead to new therapies for diseases in which synapses either fail to form or run rampant, such as autism, neurodegenerative diseases, and psychiatric disorders.



Though axons and dendrites can be easily spotted waxing and waning under the microscope, the molecular middlemen working inside the cell to shape the neuron’s sinewy processes have been much more elusive. The teams found a protein that works in the nucleus of neurons that either pares down or promotes synapses depending on whether or not the neuron is being activated. The protein, myocyte enhancer factor 2 (MEF2), turns on and off genes that control dendritic remodeling. In addition, one of the teams has identified how MEF2 switches from one program to the other, that is, from dendrite-promoting to dendrite-pruning, and the researchers have identified some of MEF2’s targets.

The uncovering of the MEF2 pathway and its genetic switch helps fill in a theoretical blank in neurobiology, but what excites the researchers are the potential implications for the clinic. "Changes in the morphology of synapses could turn out to be very important in a whole host of diseases including neurodegenerative as well as psychiatric disorders," said Azad Bonni, MD, PhD, HMS Associate Professor of Pathology who, with colleagues, authored one of the papers. Michael Greenberg, PhD, HMS Professor of Neurology at Children’s Hospital Boston, who led the other team, believes that the MEF2 pathway could play a role in autism and other neurodevelopmental diseases.


The protein works by either activating or actively repressing target genes. In working on a group of neurons in the developing rat cerebellum, HMS research fellow in pathology Aryaman Shalizi, and HST medical student Brice Gaudilliere along with Bonni and their colleagues, found the MEF2 repressor promoted synaptic differentiation. In a separate study, Steven Flavell, a graduate student in neurology, Greenberg, and their colleagues found the MEF2 activator inhibited the growth of dendritic spines in the rat hippocampus, an area of the brain associated with memory and learning. Flavell, and also the Bonni team, found the activated, or dendrite-whittling, form of MEF2 comes on in response to increased neuronal activity.

That MEF2 activation leads to the inhibition of synapse formation, makes sense in light of what is known about the nervous system. In memory and learning, as well as development, activity leads to a sculpting, or cutting away, of synapses. What may be more surprising is the way activity causes MEF2 to switch from repressor to activator.

What Bonni and his colleagues found is that molecules modify a particular spot on MEF2, and transform it into a repressor. By removing the modification, known as sumoylation, MEF2 becomes an activator.

MEF2 was first identified in neurons in the 1990s. In 1999, Zixu Mao, then an HMS research fellow, working with Bonni, Greenberg, and colleagues showed that MEF2 promotes neuronal survival but little else was known about the protein. Though they knew that MEF2 comes in activated and repressor forms, neither team knew how exactly the protein works. They suspected it might play a role in regulating activity-dependent synaptic remodeling and set out to find out if that was the case.

Taken together, the findings of the two groups might appear puzzling for they seem to say that MEF2 promotes synapse formation by repressing genes and suppresses synapse formation by activating genes. The puzzle resolves itself when one considers the possibility that the genes being turned on and off act to discourage synapse formation. In fact, Flavell and his colleagues have identified two of MEF2’s targets, arc and SynGAP. The arc protein appears to play a role in internalizing glutamate receptors, which occurs when dendrites are being disassembled. SynGAP works to turn off the synapse-promoting ras gene. Bonni and his colleagues have identified yet a third target, Nur77. There are bound to be others.

The identification of these targets, and more generally the opening up of the MEF2 pathway, could lead to new therapies for a host of diseases in which synapses either fail to form or run rampant. In fact, Greenberg is currently a member of a consortium that is trying to get at the molecular underpinnings of autism. "We think the MEF2 pathway may be central," he said.

John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu
http://www.childrenshospital.org/research

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>