Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find molecule that may hold key to learning and memory

22.02.2006


Independent research teams from Harvard Medical School and Children’s Hospital Boston have identified a master protein that sheds light on one of neurobiology’s biggest mysteries--how neurons change as a result of individual experiences. The research, which appears in two papers in the latest issue of Science (Feb 17), identifies a central protein that regulates the growth and pruning of neurons throughout life in response to environmental stimuli. This protein, and the molecular pathway it guides, could help investigators understand the process of learning and memory, as well as lead to new therapies for diseases in which synapses either fail to form or run rampant, such as autism, neurodegenerative diseases, and psychiatric disorders.



Though axons and dendrites can be easily spotted waxing and waning under the microscope, the molecular middlemen working inside the cell to shape the neuron’s sinewy processes have been much more elusive. The teams found a protein that works in the nucleus of neurons that either pares down or promotes synapses depending on whether or not the neuron is being activated. The protein, myocyte enhancer factor 2 (MEF2), turns on and off genes that control dendritic remodeling. In addition, one of the teams has identified how MEF2 switches from one program to the other, that is, from dendrite-promoting to dendrite-pruning, and the researchers have identified some of MEF2’s targets.

The uncovering of the MEF2 pathway and its genetic switch helps fill in a theoretical blank in neurobiology, but what excites the researchers are the potential implications for the clinic. "Changes in the morphology of synapses could turn out to be very important in a whole host of diseases including neurodegenerative as well as psychiatric disorders," said Azad Bonni, MD, PhD, HMS Associate Professor of Pathology who, with colleagues, authored one of the papers. Michael Greenberg, PhD, HMS Professor of Neurology at Children’s Hospital Boston, who led the other team, believes that the MEF2 pathway could play a role in autism and other neurodevelopmental diseases.


The protein works by either activating or actively repressing target genes. In working on a group of neurons in the developing rat cerebellum, HMS research fellow in pathology Aryaman Shalizi, and HST medical student Brice Gaudilliere along with Bonni and their colleagues, found the MEF2 repressor promoted synaptic differentiation. In a separate study, Steven Flavell, a graduate student in neurology, Greenberg, and their colleagues found the MEF2 activator inhibited the growth of dendritic spines in the rat hippocampus, an area of the brain associated with memory and learning. Flavell, and also the Bonni team, found the activated, or dendrite-whittling, form of MEF2 comes on in response to increased neuronal activity.

That MEF2 activation leads to the inhibition of synapse formation, makes sense in light of what is known about the nervous system. In memory and learning, as well as development, activity leads to a sculpting, or cutting away, of synapses. What may be more surprising is the way activity causes MEF2 to switch from repressor to activator.

What Bonni and his colleagues found is that molecules modify a particular spot on MEF2, and transform it into a repressor. By removing the modification, known as sumoylation, MEF2 becomes an activator.

MEF2 was first identified in neurons in the 1990s. In 1999, Zixu Mao, then an HMS research fellow, working with Bonni, Greenberg, and colleagues showed that MEF2 promotes neuronal survival but little else was known about the protein. Though they knew that MEF2 comes in activated and repressor forms, neither team knew how exactly the protein works. They suspected it might play a role in regulating activity-dependent synaptic remodeling and set out to find out if that was the case.

Taken together, the findings of the two groups might appear puzzling for they seem to say that MEF2 promotes synapse formation by repressing genes and suppresses synapse formation by activating genes. The puzzle resolves itself when one considers the possibility that the genes being turned on and off act to discourage synapse formation. In fact, Flavell and his colleagues have identified two of MEF2’s targets, arc and SynGAP. The arc protein appears to play a role in internalizing glutamate receptors, which occurs when dendrites are being disassembled. SynGAP works to turn off the synapse-promoting ras gene. Bonni and his colleagues have identified yet a third target, Nur77. There are bound to be others.

The identification of these targets, and more generally the opening up of the MEF2 pathway, could lead to new therapies for a host of diseases in which synapses either fail to form or run rampant. In fact, Greenberg is currently a member of a consortium that is trying to get at the molecular underpinnings of autism. "We think the MEF2 pathway may be central," he said.

John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu
http://www.childrenshospital.org/research

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>