Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scattering of hydrogen makes calculation easier

22.02.2006


Leiden chemists in Science: Chemical reaction between hydrogen molecule and metal surface straightforward to calculate



The chemical reaction of hydrogen molecules (H2) with a platinum surface can be calculated much more straightforwardly than many researchers to date had thought. This is encouraging for research into hydrogen as a clean fuel and heterogeneous catalysis, which is where the reactions of molecules to metal surfaces plays a significant role. Chemists can now test theories on a broad scale which describe the interaction of molecules with metal surfaces.

Born-Oppenheimer


The Leiden theoretical chemists Ernst Pijper, Roar Olsen and Geert-Jan Kroes, together with colleagues from Amsterdam and from Spain, demonstrated that the Born-Oppenheimer approach can be used in predicting the reaction of hydrogen molecules with a metal surface. This is an approach which considerably simplifies chemical calculations by splitting them in two. A heated debate is currently raging on the applicability of the Born-Oppenheimer approach to reactions of molecules with a metal surface - a class of reactions which is very important in this application.

’Hot results’

The researchers published their findings last Thursday on the site of Science Express. This site publishes on the web a number of what they call hot results, sometimes weeks before they appear in the journal Science. The Born-Oppenheimer approach can be used, according to the researchers in their article, because a hydrogen molecule which is fired at a platinum surface, first splits into two atoms or is scattered at the surface before any strong interaction with the platinum takes place.

Complicated

Chemical reactions are generally so complicated that it is difficult to make predictions using quantum mechanical calculations, the specialism of theoretical chemistry. The Born-Oppenheimer approach is a useful tool for making these chemical calculations.

Born and Oppenheimer in 1927 postulated the idea that you can split a chemical calculation in two. First you solve the movement of the electrons and then the movement of the atomic nuclei which are so much heavier and slower than electrons that you can imagine they are standing still in comparison.

This makes the calculation much easier, and the Born-Oppenheimer approach is then also a welcome tool for predicting the progress of chemical reactions of complex systems. It works particularly well in calculating the behaviour of many gas phase reactions.

Out of step

The Born-Oppenheimer approach can only be applied if the reaction processes are adiabatic, which means that the electrons follow the movements of the nuclei and do not get out of step. And a lot of reactions of molecules with a metal surface are not adiabatic.

It has been shown for a number of molecules investigated to date which have been fired at a metal surface, that they already form a strong bond with the surface before they dissociate or are scattered. The consequence is that the molecules affect the metal surface, by forming so-called electron-hole pairs. This process is non-adiabatic; the electrons no longer follow the movement of the nuclei, and the Born-Oppernheimer approach cannot therefore be used.

Firing

Other molecules, like nitrogen, which when stretched like to take up electrons, can, if they are fired in a highly excited state at a metal surface that weakly binds electrons, shoot electrons out of a metal surface. This case also constitutes a breakdown of the Born-Oppenheimer approach.

But, based on calculations and experiments, the three Leiden researchers and their colleagues have been able to show that hydrogen molecules behave very differently if they are fired at a metal surface.

Back-scattering

At first, hydrogen molecules split into two atoms, or are back-scattered to the platinum surface before they form the strong bond with the metal whereby electron-hole pairs can be formed.

Secondly, a hydrogen molecule has a low electron affinity, which means that it does not readily take up an electron. Therefore, it does not tend to ’take’ an electron of the metal far from the surface. So, here too there is no risk of forming electron-hole pairs.

The reaction of molecular hydrogen with a platinum surface, and the scattering of the molecule on the surface is then an adiabatic process, and the Born-Oppenheimer approach can readily be applied to this class of reactions.

Hydrogen economy

‘It is not the case that hydrogen economy will be a fact next year as a result of this discovery,’ says Prof. dr. Geert-Jan Kroes, who is conducting fundamental research into hydrogen as a source of clean energy, and who transformed his faculty into a hydrogen plaza on the Science Day in 2005. ’But it is encouraging, because some hydrogen storage systems are based on the disassociation of hydrogen, that is the breaking of the hydrogen-hydrogen bond. Sometimes a metal is added, such as palladium. And disassociation can be described with the Born-Oppenheimer approach. Platinum is not a candidate for promoting the storage of hydrogen. We do know now that a whole class of reactions, particularly dissociation of hydrogen on metal surfaces, can be solved simply, so that we can conduct large scale testing of theories which describe the interaction of molecules with metal surfaces.‘

Hilje Papma | alfa
Further information:
http://research.leidenuniv.nl/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>