Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists find male gene in brain area targeted by Parkinson’s

21.02.2006


Discovery may explain why more men than women develop the disease



UCLA scientists have discovered that a sex gene responsible for making embryos male and forming the testes is also produced by the brain region targeted by Parkinson’s disease. Published in the Feb. 21 edition of Current Biology, the new research may explain why more men than women develop the degenerative disorder, which afflicts roughly 1 million Americans.

"Men are 1.5 times more likely to develop Parkinson’s disease than women," said Dr. Eric Vilain, associate professor of human genetics at the David Geffen School of Medicine at UCLA. "Our findings may offer new clues to how the disorder affects men and women differently, and shed light on why men are more susceptible to the disease."


In 1990, British researchers identified SRY as the gene that determines gender and makes embryos male. Located on the male sex chromosome, SRY manufactures a protein that is secreted by cells in the testes.

Now, in an unexpected discovery, Vilain’s team became the first to trace the SRY protein to a region of the brain called the substantia nigra, which deteriorates in Parkinson’s disease.

Parkinson’s disease occurs when cells in the substantia nigra begin to malfunction and die. These brain cells produce a neurotransmitter called dopamine that communicates with the brain areas controlling movement and coordination.

As the cells die off, they produce less dopamine. This slows the delivery of messages from the brain to the rest of the body, leaving the person unable to initiate or control their physical movements. The condition eventually leads to paralysis.

"For the first time, we’ve discovered that the brain cells that produce dopamine depend upon a sex-specific gene to function properly," Vilain said. "We’ve also shown that SRY plays a central role not just in the male genitals, but also in regulating the brain."

Vilain’s lab used a rat model to study the effect of SRY on the brain. When the researchers lowered the level of SRY in the substantia nigra, they saw a corresponding drop in an enzyme called tyrosine hydroxylase (TH), which plays a key role in the brain’s production of dopamine.

In a surprise finding, the drop in TH occurred only in the male rats. The female rats remained unaffected.

"When we reduced SRY levels in the rats’ brains, the male animals began experiencing the movement problems caused by insufficient dopamine," Vilain said. "Low levels of SRY triggered Parkinson’s symptoms in the male rats, cutting their physical agility by half in a week.

"Initially, the rat could walk 14 steps in 10 seconds," he noted. "After we lowered the SRY levels in its brain, the rat could only manage seven steps in the same amount of time."

Vilain believes that variations in SRY levels may be linked to the onset of Parkinson’s and could offer insights into who is at risk for the disease.

"SRY may serve as a protective agent against Parkinson’s," he said. "Men who contract the disease may have lower levels of the gene in the brain."

Because SRY is found only in males, Vilain thinks women must possess another physiological mechanism that protects dopamine-producing cells in the substantia nigra.

"We suspect that estrogens in women could play the same role as SRY in protecting the female brain from Parkinson’s disease," he said. "Our lab is currently studying this hypothesis in an animal model."

Sex differences in other dopamine-linked disorders, such as schizophrenia or addiction, may also be explained by the SRY gene, Vilain said.

"It’s possible that dopamine-related disorders that reveal dramatic differences in severity and rates in the genders could depend on the SRY levels in the brain," he said.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>