Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists find male gene in brain area targeted by Parkinson’s

21.02.2006


Discovery may explain why more men than women develop the disease



UCLA scientists have discovered that a sex gene responsible for making embryos male and forming the testes is also produced by the brain region targeted by Parkinson’s disease. Published in the Feb. 21 edition of Current Biology, the new research may explain why more men than women develop the degenerative disorder, which afflicts roughly 1 million Americans.

"Men are 1.5 times more likely to develop Parkinson’s disease than women," said Dr. Eric Vilain, associate professor of human genetics at the David Geffen School of Medicine at UCLA. "Our findings may offer new clues to how the disorder affects men and women differently, and shed light on why men are more susceptible to the disease."


In 1990, British researchers identified SRY as the gene that determines gender and makes embryos male. Located on the male sex chromosome, SRY manufactures a protein that is secreted by cells in the testes.

Now, in an unexpected discovery, Vilain’s team became the first to trace the SRY protein to a region of the brain called the substantia nigra, which deteriorates in Parkinson’s disease.

Parkinson’s disease occurs when cells in the substantia nigra begin to malfunction and die. These brain cells produce a neurotransmitter called dopamine that communicates with the brain areas controlling movement and coordination.

As the cells die off, they produce less dopamine. This slows the delivery of messages from the brain to the rest of the body, leaving the person unable to initiate or control their physical movements. The condition eventually leads to paralysis.

"For the first time, we’ve discovered that the brain cells that produce dopamine depend upon a sex-specific gene to function properly," Vilain said. "We’ve also shown that SRY plays a central role not just in the male genitals, but also in regulating the brain."

Vilain’s lab used a rat model to study the effect of SRY on the brain. When the researchers lowered the level of SRY in the substantia nigra, they saw a corresponding drop in an enzyme called tyrosine hydroxylase (TH), which plays a key role in the brain’s production of dopamine.

In a surprise finding, the drop in TH occurred only in the male rats. The female rats remained unaffected.

"When we reduced SRY levels in the rats’ brains, the male animals began experiencing the movement problems caused by insufficient dopamine," Vilain said. "Low levels of SRY triggered Parkinson’s symptoms in the male rats, cutting their physical agility by half in a week.

"Initially, the rat could walk 14 steps in 10 seconds," he noted. "After we lowered the SRY levels in its brain, the rat could only manage seven steps in the same amount of time."

Vilain believes that variations in SRY levels may be linked to the onset of Parkinson’s and could offer insights into who is at risk for the disease.

"SRY may serve as a protective agent against Parkinson’s," he said. "Men who contract the disease may have lower levels of the gene in the brain."

Because SRY is found only in males, Vilain thinks women must possess another physiological mechanism that protects dopamine-producing cells in the substantia nigra.

"We suspect that estrogens in women could play the same role as SRY in protecting the female brain from Parkinson’s disease," he said. "Our lab is currently studying this hypothesis in an animal model."

Sex differences in other dopamine-linked disorders, such as schizophrenia or addiction, may also be explained by the SRY gene, Vilain said.

"It’s possible that dopamine-related disorders that reveal dramatic differences in severity and rates in the genders could depend on the SRY levels in the brain," he said.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>