Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flesh-eating bacteria escape body’s safety net

21.02.2006


Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered that so-called flesh-eating "Strep" bacteria use a specific enzyme to break free of the body’s immune system, a finding which could potentially lead to new treatments for serious infections in human patients.



The research, reported in the February 21, 2006 issue of the journal Current Biology, focuses on the major human pathogen group A Streptococcus. Among the most important of all bacterial pathogens, strep is responsible for a wide range of diseases – from simple throat and skin infections to life-threatening conditions such as necrotizing fasciitis ("flesh-eating disease") and toxic shock syndrome.

"These findings suggest a novel approach to treating serious Strep infections, such as flesh-eating disease, by assisting our body’s own defense system," said senior author Victor Nizet, M.D., UCSD associate professor of pediatrics and an infectious diseases physician at Children’s Hospital, San Diego.


The UCSD investigators examined the interaction of Strep bacteria with neutrophils, specialized white blood cells that play a front line role in human’s immune defense against pathogenic microbes. Recent research by European investigators had shown that neutrophils are particularly effective defenders because they release "nets" composed of DNA and toxic compounds to entrap and kill invading bacteria. In the current study, the UCSD scientists proved that disease-causing Strep release an enzyme that degrades these DNA nets, thereby allowing the organism to escape the neutrophil net and spread in body tissues.

The UCSD team used a molecular genetic approach for their studies, knocking out the gene encoding the DNA-degrading enzyme from a pathogenic Strep strain that was originally isolated from a patient suffering from necrotizing fasciitis.

"Deprived of this single enzyme, the mutant Strep strain was easily killed by human neutrophils", said lead author John Buchanan, Ph.D., research scientist in the UCSD department of pediatrics. "In addition, the mutant Strep bacteria no longer produced a spreading infection when injected into the skin of experimental mice."

The critical role of the DNA-degrading Strep enzyme was confirmed by cloning the corresponding gene into a normally non-pathogenic bacterial strain. Addition of the single gene allowed these bacteria to degrade DNA, escape neutrophil killing, and produce a spreading ulcer in the mouse infection model. Special fluorescent microscopy techniques were used to observe how the Strep enzyme dissolved the DNA nets and allowed bacteria to float away from the neutrophils.

"The experiments explain how this DNA-degrading enzyme contributes to the severe infections produced by certain strains of Strep bacteria, while simultaneously confirming just how important neutrophil DNA nets are to our normal immune defense," said Buchanan.

Recognizing the critical role played by the DNA-degrading enzyme in progression of Strep disease, the UCSD researchers examined whether it could represent a target for therapy. Mice experimentally infected with Strep were treated by injecting a chemical inhibitor of the DNA-degrading enzyme at the site of infection. A dramatic reduction in bacterial counts and tissue injury was observed following the inhibitor treatment, when compared to controls receiving a placebo.

Nizet explained that the researchers’ findings could lead to novel treatments for Strep-related diseases. "Instead of attempting to kill the bacteria directly with standard antibiotics, a treatment strategy to inhibit the Strep DNA-degrading enzyme could disarm the pathogen, making it susceptible to clearance by our normal immune defenses," he said.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>