Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flesh-eating bacteria escape body’s safety net

21.02.2006


Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered that so-called flesh-eating "Strep" bacteria use a specific enzyme to break free of the body’s immune system, a finding which could potentially lead to new treatments for serious infections in human patients.



The research, reported in the February 21, 2006 issue of the journal Current Biology, focuses on the major human pathogen group A Streptococcus. Among the most important of all bacterial pathogens, strep is responsible for a wide range of diseases – from simple throat and skin infections to life-threatening conditions such as necrotizing fasciitis ("flesh-eating disease") and toxic shock syndrome.

"These findings suggest a novel approach to treating serious Strep infections, such as flesh-eating disease, by assisting our body’s own defense system," said senior author Victor Nizet, M.D., UCSD associate professor of pediatrics and an infectious diseases physician at Children’s Hospital, San Diego.


The UCSD investigators examined the interaction of Strep bacteria with neutrophils, specialized white blood cells that play a front line role in human’s immune defense against pathogenic microbes. Recent research by European investigators had shown that neutrophils are particularly effective defenders because they release "nets" composed of DNA and toxic compounds to entrap and kill invading bacteria. In the current study, the UCSD scientists proved that disease-causing Strep release an enzyme that degrades these DNA nets, thereby allowing the organism to escape the neutrophil net and spread in body tissues.

The UCSD team used a molecular genetic approach for their studies, knocking out the gene encoding the DNA-degrading enzyme from a pathogenic Strep strain that was originally isolated from a patient suffering from necrotizing fasciitis.

"Deprived of this single enzyme, the mutant Strep strain was easily killed by human neutrophils", said lead author John Buchanan, Ph.D., research scientist in the UCSD department of pediatrics. "In addition, the mutant Strep bacteria no longer produced a spreading infection when injected into the skin of experimental mice."

The critical role of the DNA-degrading Strep enzyme was confirmed by cloning the corresponding gene into a normally non-pathogenic bacterial strain. Addition of the single gene allowed these bacteria to degrade DNA, escape neutrophil killing, and produce a spreading ulcer in the mouse infection model. Special fluorescent microscopy techniques were used to observe how the Strep enzyme dissolved the DNA nets and allowed bacteria to float away from the neutrophils.

"The experiments explain how this DNA-degrading enzyme contributes to the severe infections produced by certain strains of Strep bacteria, while simultaneously confirming just how important neutrophil DNA nets are to our normal immune defense," said Buchanan.

Recognizing the critical role played by the DNA-degrading enzyme in progression of Strep disease, the UCSD researchers examined whether it could represent a target for therapy. Mice experimentally infected with Strep were treated by injecting a chemical inhibitor of the DNA-degrading enzyme at the site of infection. A dramatic reduction in bacterial counts and tissue injury was observed following the inhibitor treatment, when compared to controls receiving a placebo.

Nizet explained that the researchers’ findings could lead to novel treatments for Strep-related diseases. "Instead of attempting to kill the bacteria directly with standard antibiotics, a treatment strategy to inhibit the Strep DNA-degrading enzyme could disarm the pathogen, making it susceptible to clearance by our normal immune defenses," he said.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>