Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flesh-eating bacteria escape body’s safety net

21.02.2006


Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered that so-called flesh-eating "Strep" bacteria use a specific enzyme to break free of the body’s immune system, a finding which could potentially lead to new treatments for serious infections in human patients.



The research, reported in the February 21, 2006 issue of the journal Current Biology, focuses on the major human pathogen group A Streptococcus. Among the most important of all bacterial pathogens, strep is responsible for a wide range of diseases – from simple throat and skin infections to life-threatening conditions such as necrotizing fasciitis ("flesh-eating disease") and toxic shock syndrome.

"These findings suggest a novel approach to treating serious Strep infections, such as flesh-eating disease, by assisting our body’s own defense system," said senior author Victor Nizet, M.D., UCSD associate professor of pediatrics and an infectious diseases physician at Children’s Hospital, San Diego.


The UCSD investigators examined the interaction of Strep bacteria with neutrophils, specialized white blood cells that play a front line role in human’s immune defense against pathogenic microbes. Recent research by European investigators had shown that neutrophils are particularly effective defenders because they release "nets" composed of DNA and toxic compounds to entrap and kill invading bacteria. In the current study, the UCSD scientists proved that disease-causing Strep release an enzyme that degrades these DNA nets, thereby allowing the organism to escape the neutrophil net and spread in body tissues.

The UCSD team used a molecular genetic approach for their studies, knocking out the gene encoding the DNA-degrading enzyme from a pathogenic Strep strain that was originally isolated from a patient suffering from necrotizing fasciitis.

"Deprived of this single enzyme, the mutant Strep strain was easily killed by human neutrophils", said lead author John Buchanan, Ph.D., research scientist in the UCSD department of pediatrics. "In addition, the mutant Strep bacteria no longer produced a spreading infection when injected into the skin of experimental mice."

The critical role of the DNA-degrading Strep enzyme was confirmed by cloning the corresponding gene into a normally non-pathogenic bacterial strain. Addition of the single gene allowed these bacteria to degrade DNA, escape neutrophil killing, and produce a spreading ulcer in the mouse infection model. Special fluorescent microscopy techniques were used to observe how the Strep enzyme dissolved the DNA nets and allowed bacteria to float away from the neutrophils.

"The experiments explain how this DNA-degrading enzyme contributes to the severe infections produced by certain strains of Strep bacteria, while simultaneously confirming just how important neutrophil DNA nets are to our normal immune defense," said Buchanan.

Recognizing the critical role played by the DNA-degrading enzyme in progression of Strep disease, the UCSD researchers examined whether it could represent a target for therapy. Mice experimentally infected with Strep were treated by injecting a chemical inhibitor of the DNA-degrading enzyme at the site of infection. A dramatic reduction in bacterial counts and tissue injury was observed following the inhibitor treatment, when compared to controls receiving a placebo.

Nizet explained that the researchers’ findings could lead to novel treatments for Strep-related diseases. "Instead of attempting to kill the bacteria directly with standard antibiotics, a treatment strategy to inhibit the Strep DNA-degrading enzyme could disarm the pathogen, making it susceptible to clearance by our normal immune defenses," he said.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>