Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU’S Childress demonstrates tool for studying hovering flight at international science meeting

21.02.2006


A tool for examining hovering flight of insects and birds could allow researchers to study other matters pertaining to locomotion, Stephen Childress, a professor at New York University’s Courant Institute of Mathematical Sciences, demonstrated at the American Association for the Advancement of Science (AAAS) annual meeting in St. Louis. The findings were part of a symposium, "How Insects Fly," which also included researchers from Cornell University and the California Institute of Technology.



Previous research in this area was conducted through observations of a small pteropod mollusk, or "sea butterfly," whose locomotion in water is similar to that of a butterfly’s flight. That revealed two modes of locomotion: in one, cilia mode, the organism swims forward much like a micro-organism, using waves of beating cilia, or hair-like structures; in another, flapping mode, the wings are extended and flapped back and forth in a symmetrical manner, propelling the body forward. These results showed that this particular organism was able to use both modes: one pertaining to the microorganisms, the other to the insects or birds. As the pteropods grew, observations by Childress with his colleague, Robert Dudley, a biologist at the University of California, Berkeley, showed that the wings enabled more rapid swimming. Extrapolating the data backwards to small size, it was found that wings ceased to be effective at a critical size, establishing a transition size for winged flight.

Building on this scholarship, Childress and his colleagues at the Courant Institute’s Applied Mathematics Laboratory sought ways to study free flight in the laboratory. They first replicated the forward flight of the pteropod by driving a horizontal rigid blade in a vertical oscillation while immersed in fluid. The blade was mounted on a vertical shaft, free to rotate in either direction. The blade flapped horizontally according to Newton’s law of motion. It was found that the transition seen in the pteropods occurred also with the flapping blade. The transition depends upon both the size of the blade and the frequency of flapping. The researchers were thus able to study the transition by varying the frequency instead of the size. Below a certain frequency the blade ceased to rotate.


To simulate the hovering flight of a flapping body, the researchers created a vertical "oscillating wind tunnel," by using a large speaker operated in the range 10-100 Hertz and driving an oscillating column of air in a vertical, cylindrical flight chamber. They then simulated a bug using a small winged body made of paper and placing it in the airflow. The wings are driven to flap and the bug hovers in the flow. This allows analysts to compare the hovering of a passive flexible body in an oscillating airflow with that of an active flapper. The researchers then measured the minimum airflow amplitude needed for geometrically similar bugs of various sizes to hover in the oscillating air and were able to show how the optimal flapping frequency changes with size.

Childress and his colleagues are presently comparing these observations of free passive flapping flight with models of insect flight. The work promises to provide a new approach to the study of flapping flight, enabling studies of free hovering of winged bodies.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>