Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M reaches milestone in diabetes research using pig islets

20.02.2006


Research offers hope to increase islet supply to cure type 1 diabetes

Researchers at the University of Minnesota’s Diabetes Institute for Immunology and Transplantation have successfully reversed diabetes in monkeys using transplanted islet cells from pigs.

Survival of pig islet transplants was made possible with a novel immunosuppressive protocol. Graft survival did not require genetic modification of donor pigs or coating or encapsulation of donor islets.



Researchers have already had success reversing type 1 diabetes in humans through islet transplantation, however, the demand for islet cells grossly outweighs the supply. In order to make islet transplantation a viable solution for the tens of thousands of people with difficult-to-manage diabetes, a safe and reliable source of islet cells must be found.

"These results suggest it is feasible to use pig islet cells as a path to a far-reaching cure for diabetes," said Bernhard J. Hering, M.D., associate professor of surgery and lead investigator. "Now that we have identified critical pathways involved in immune recognition and rejection of pig islet transplants, we can begin working on better and safer immunosuppressant therapies with the eventual goal of bringing the treatment to people."

This unprecedented progress on islet xenotransplantation will be released online Feb. 19, 2006 in the medical journal, Nature Medicine. If research continues to be successful, Hering believes it may be possible to start clinical trials in humans in the next three years.

To begin working toward the goal of using this technology to help people, Spring Point Project, a non-profit corporation, has taken concrete steps to build and operate biosecure barrier facilities to raise high-health pigs for planned pig islet transplant trials in humans.

Since it will take time to build biosecure facilities that meet the federal requirements for using animal tissues in humans, the Spring Point Project will proceed on a parallel track with the research at the University. The goal is to have suitable donor pigs available by the time the University has refined the immunosuppressive treatment to a point that makes it safe for clinical trials to begin.

Islet transplants seek to address an unmet medical need in people with type 1 and possibly type 2 diabetes who suffer frequent acute and severe chronic complications. The process is performed by isolating islet cells from a donor pancreas and transplanting them into the portal vein of the liver in people with diabetes. If successful, transplanted islets will sense blood glucose levels on a minute-to-minute basis and release the appropriate amount of insulin to achieve tight blood glucose control. Insulin injections are no longer needed in recipients of successful transplants.

Transplantation also offers hope in reducing the risk of developing debilitating secondary complications of diabetes, such as damage to the heart and blood vessels, eyes, nerves, and kidneys.

Sara Buss | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>