Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progeria Progress: Studies Show How Mutant Protein Hurts Hearts

20.02.2006


Two new research studies on progeria, published in the Proceedings of the National Academy of Sciences, detail the damage a mutant protein does to blood vessel cells of humans and mice. The discoveries offer increased hope for a cure for progeria, a genetic condition fatal in children, but may also provide key insight into the cause of adult heart disease.



In children with progeria, a mutant protein accumulates in blood vessel cells, hampering their ability to grow and multiply or killing them outright. In mice that produce this same toxic protein, the effect is similar: These vascular cells become damaged or die.

These are the findings of two research reports published in the Proceedings of the National Academy of Sciences. Both shed important new light on the progression of progeria, a rare and fatal genetic condition that causes accelerated aging in children. But they may also illuminate the cause of atherosclerosis in adults. Also known as hardening of the arteries, atherosclerosis is a leading cause of heart attacks and strokes.


“These are very important findings not only for children with progeria but potentially for millions of adults,” said Leslie B. Gordon, M.D., Ph.D., assistant professor of pediatrics research at Brown Medical School and a co-author on both research papers.

“We now know there is a brand-new culprit molecule that plays a pivotal role in causing heart disease,” Gordon said. “We know this is true with progeria. Now we can explore a bigger question: Does this molecule play the same role in heart disease in all of us?”

A Brown Medical School graduate, Gordon created the Progeria Research Foundation in 1999, one year after her son, Sam, was diagnosed with the condition. The foundation raises public awareness and bankrolls research about the rare disorder, which causes hair loss, osteoporosis, and other signs of premature aging in children. Children with the disorder die almost exclusively of atheroscleroris at an average age of 13. This form of heart disease is typically seen in people over 60.

Progeria is extremely rare. The foundation reports that there are 42 known cases worldwide. Atherosclerosis, however, is quite common, affecting millions of adults. It prompts the build-up of fats, cholesterol, calcium and other substances in arteries. These plaques reduce blood flow and can cause clots that block blood vessels to the heart or brain, triggering a heart attack or stroke.

To better understand progeria, and find a cure, the foundation runs a medical and research database through Brown’s Center for Gerontology and Health Care Research and operates a cell and tissue bank at Rhode Island Hospital. It also funds research, providing partial funding for one of the new research studies.

Here are summaries of those reports:

>>> Using human skin tissue from the Rhode Island Hospital bank, researchers from the College of Physicians and Surgeons at Columbia University found that progerin, a mutant form of the protein lamin A, builds up in the nucleus of cells, particularly those of blood vessels. As a result of this build-up, the nucleus becomes deformed and these cells stop growing, moving and multiplying. Some cells die. Blood vessel cells most affected were those in smooth muscle. The result is support for a direct relationship between progerin and atherosclerosis. The results of this study replicate findings included in previous research on the use of FTIs in progeria research.

>>> A research team, led by scientists at the National Human Genome Research Institute at the National Institutes of Health, created and studied mice that carried the human form of the mutant lamin A gene. The gene, harbored in an artificial chromosome, produced the same toxic protein that harms or kills cells in children with progeria. In parallel with the Columbia and Brown team, scientists found that these mice lost blood vessel cells in smooth muscle.

“This mouse model should prove valuable for testing experimental therapies for progeria, such as anti-cancer drugs and bone marrow transplants,” said Francis S. Collins, M.D., director of the National Human Genome Research Institute and senior scientist on the NIH paper. “Now that we’re armed with a better understanding of the underlying causes of atherosclerosis, we can also use this model to explore cardiovascular disease in general.”

The Progeria Research Foundation and the National Institutes of Health funded the Columbia-led research. The National Institutes of Health, the Tore Nilsson Foundation, the Ake Wiberg Foundation, the Hagelen Foundation, the Loo and Hans Osterman Foundation, the Torsten and Ragnar Soderberg Foundation, the Jeansson Foundation, the Swedish Research Foundation and the Swedish Foundation for Strategic Research funded the experiments overseen by the National Human Genome Research Institute.

Copies of both articles can be found at the website of the Proceedings of the National Academies of Science at www.pnas.org. For more information on progeria, visit genome.gov/11007255 or www.progeriaresearch.org.

Wendy Lawton | EurekAlert!
Further information:
http://www.progeriaresearch.org
http://genome.gov/11007255
http://www.pnas.org

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>