Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research from magnet lab, Scripps Florida gives scientists powerful tool for drug discovery

20.02.2006


Researchers at Florida State University’s National High Magnetic Field Laboratory and Scripps Florida have developed and evaluated a robust new system for analyzing how drugs bind to proteins. This groundbreaking work could speed the delivery of potential new drugs and improve existing ones.



The work, which appears this week in the journal Analytical Chemistry, is the first published paper to result from a partnership between Scripps and a Florida university.

Scripps Florida is a state-of-the-art biomedical research institute currently located in Jupiter, Fla., on the campus of Florida Atlantic University. Scripps announced Florida would be home to its second facility in 2003, with the Florida Legislature agreeing to appropriate $310 million for the organization’s start-up costs.


The National Science Foundation-funded magnet lab is the world leader in high-magnetic-field research and magnet development. Its facilities -- with branches at FSU, the University of Florida and Los Alamos National Laboratory in New Mexico -- are used by faculty and visiting scientists for research in many disciplines, including biology and biochemistry.

The collaborative research is focused on getting a more accurate picture of human proteins, which are the target of most drugs. Understanding the nature of the interaction between a drug and a protein -- where the drug attaches and where it doesn’t -- is one of the keys to drug research, because the exact placement of a drug can determine whether it enhances a natural biological function or counteracts it.

"By pairing the magnet lab’s expertise in high-field research with Scripps’ expertise in protein dynamics and drug development, we can create a kind of map that shows where drugs bind to the surface of proteins," said Alan G. Marshall, director of the lab’s Ion Cyclotron Resonance (ICR) program and the Kasha Professor of Chemistry and Biochemistry at FSU. "We can do that because our technology is the best way to generate highly accurate pictures of tiny amounts of protein molecules."

The technology referenced by Marshall is a Fourier transform ICR mass spectrometer built around a 14.5-tesla superconducting magnet. A tesla is a unit of measurement of a magnetic field’s strength. To illustrate the magnet’s relative strength, an MRI machine is 1.5 tesla, and a refrigerator magnet is 0.0025 tesla. Marshall is the co-inventor of Fourier transform ICR, and his group is widely acknowledged as the world leader in the development of Fourier transform ICR techniques and applications.

Marshall said the experiment detailed in Analytical Chemistry can best be described as "molecular spray painting." Here’s how it works:

The receptor protein with a drug stuck to it is dipped into a solvent called "heavy water" (deuterium oxide, or D2O). In the portions of the receptor that can exchange with heavy water (regions not involved in hydrogen bonding), the natural hydrogen atoms are gradually replaced by deuterium atoms, which increase the mass from 1 to 2 mass units. Scientists then dissect the receptor and use the magnet to weigh pieces of it to see which segments of the receptor remain covered up by the drug.

The team saw the potential of probing human protein molecules with this spray-painting technique, but also recognized that the experiment was limited by several factors. Each test that would have to be performed would take anywhere from one minute to several hours, and each measurement would be slow. To ensure the reliability of the experiment, the process would need to be replicated twice more to validate the results, adding additional days to the process.

The paper published in Analytical Chemistry lays out the results of research to improve the technical aspects of the experiment. By utilizing the high-field ICR magnet and its powerful spectrometer, coupled with a sample preparation robot, the scientists were able to extract data that show how the drug alters the dynamics of the receptor upon binding. This application of the experiment can measure changes in a fraction of the time -- and show those changes over time. And the results are highly reproducible.

"This research is important because it gives us a new and very powerful way to probe the interaction between drugs and proteins," said Patrick Griffin, professor of biochemistry and head of drug discovery at Scripps Florida. "Because we’ve now solved many of the technical problems, this technique is sure to play an even larger role in understanding the mechanism of action of many classes of drugs."

Now that the data acquisition has been automated, the next step is automating the data analysis. The amount of data generated by the magnet’s high-test mass spectrometer is staggering: 1 million data points every second. To analyze the data by hand would take a month. With automated software being developed at the magnet lab, the analysis will take just a few minutes.

Alan G. Marshall | EurekAlert!
Further information:
http://www.magnet.fsu.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>