Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research from magnet lab, Scripps Florida gives scientists powerful tool for drug discovery

20.02.2006


Researchers at Florida State University’s National High Magnetic Field Laboratory and Scripps Florida have developed and evaluated a robust new system for analyzing how drugs bind to proteins. This groundbreaking work could speed the delivery of potential new drugs and improve existing ones.



The work, which appears this week in the journal Analytical Chemistry, is the first published paper to result from a partnership between Scripps and a Florida university.

Scripps Florida is a state-of-the-art biomedical research institute currently located in Jupiter, Fla., on the campus of Florida Atlantic University. Scripps announced Florida would be home to its second facility in 2003, with the Florida Legislature agreeing to appropriate $310 million for the organization’s start-up costs.


The National Science Foundation-funded magnet lab is the world leader in high-magnetic-field research and magnet development. Its facilities -- with branches at FSU, the University of Florida and Los Alamos National Laboratory in New Mexico -- are used by faculty and visiting scientists for research in many disciplines, including biology and biochemistry.

The collaborative research is focused on getting a more accurate picture of human proteins, which are the target of most drugs. Understanding the nature of the interaction between a drug and a protein -- where the drug attaches and where it doesn’t -- is one of the keys to drug research, because the exact placement of a drug can determine whether it enhances a natural biological function or counteracts it.

"By pairing the magnet lab’s expertise in high-field research with Scripps’ expertise in protein dynamics and drug development, we can create a kind of map that shows where drugs bind to the surface of proteins," said Alan G. Marshall, director of the lab’s Ion Cyclotron Resonance (ICR) program and the Kasha Professor of Chemistry and Biochemistry at FSU. "We can do that because our technology is the best way to generate highly accurate pictures of tiny amounts of protein molecules."

The technology referenced by Marshall is a Fourier transform ICR mass spectrometer built around a 14.5-tesla superconducting magnet. A tesla is a unit of measurement of a magnetic field’s strength. To illustrate the magnet’s relative strength, an MRI machine is 1.5 tesla, and a refrigerator magnet is 0.0025 tesla. Marshall is the co-inventor of Fourier transform ICR, and his group is widely acknowledged as the world leader in the development of Fourier transform ICR techniques and applications.

Marshall said the experiment detailed in Analytical Chemistry can best be described as "molecular spray painting." Here’s how it works:

The receptor protein with a drug stuck to it is dipped into a solvent called "heavy water" (deuterium oxide, or D2O). In the portions of the receptor that can exchange with heavy water (regions not involved in hydrogen bonding), the natural hydrogen atoms are gradually replaced by deuterium atoms, which increase the mass from 1 to 2 mass units. Scientists then dissect the receptor and use the magnet to weigh pieces of it to see which segments of the receptor remain covered up by the drug.

The team saw the potential of probing human protein molecules with this spray-painting technique, but also recognized that the experiment was limited by several factors. Each test that would have to be performed would take anywhere from one minute to several hours, and each measurement would be slow. To ensure the reliability of the experiment, the process would need to be replicated twice more to validate the results, adding additional days to the process.

The paper published in Analytical Chemistry lays out the results of research to improve the technical aspects of the experiment. By utilizing the high-field ICR magnet and its powerful spectrometer, coupled with a sample preparation robot, the scientists were able to extract data that show how the drug alters the dynamics of the receptor upon binding. This application of the experiment can measure changes in a fraction of the time -- and show those changes over time. And the results are highly reproducible.

"This research is important because it gives us a new and very powerful way to probe the interaction between drugs and proteins," said Patrick Griffin, professor of biochemistry and head of drug discovery at Scripps Florida. "Because we’ve now solved many of the technical problems, this technique is sure to play an even larger role in understanding the mechanism of action of many classes of drugs."

Now that the data acquisition has been automated, the next step is automating the data analysis. The amount of data generated by the magnet’s high-test mass spectrometer is staggering: 1 million data points every second. To analyze the data by hand would take a month. With automated software being developed at the magnet lab, the analysis will take just a few minutes.

Alan G. Marshall | EurekAlert!
Further information:
http://www.magnet.fsu.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>