Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research from magnet lab, Scripps Florida gives scientists powerful tool for drug discovery

20.02.2006


Researchers at Florida State University’s National High Magnetic Field Laboratory and Scripps Florida have developed and evaluated a robust new system for analyzing how drugs bind to proteins. This groundbreaking work could speed the delivery of potential new drugs and improve existing ones.



The work, which appears this week in the journal Analytical Chemistry, is the first published paper to result from a partnership between Scripps and a Florida university.

Scripps Florida is a state-of-the-art biomedical research institute currently located in Jupiter, Fla., on the campus of Florida Atlantic University. Scripps announced Florida would be home to its second facility in 2003, with the Florida Legislature agreeing to appropriate $310 million for the organization’s start-up costs.


The National Science Foundation-funded magnet lab is the world leader in high-magnetic-field research and magnet development. Its facilities -- with branches at FSU, the University of Florida and Los Alamos National Laboratory in New Mexico -- are used by faculty and visiting scientists for research in many disciplines, including biology and biochemistry.

The collaborative research is focused on getting a more accurate picture of human proteins, which are the target of most drugs. Understanding the nature of the interaction between a drug and a protein -- where the drug attaches and where it doesn’t -- is one of the keys to drug research, because the exact placement of a drug can determine whether it enhances a natural biological function or counteracts it.

"By pairing the magnet lab’s expertise in high-field research with Scripps’ expertise in protein dynamics and drug development, we can create a kind of map that shows where drugs bind to the surface of proteins," said Alan G. Marshall, director of the lab’s Ion Cyclotron Resonance (ICR) program and the Kasha Professor of Chemistry and Biochemistry at FSU. "We can do that because our technology is the best way to generate highly accurate pictures of tiny amounts of protein molecules."

The technology referenced by Marshall is a Fourier transform ICR mass spectrometer built around a 14.5-tesla superconducting magnet. A tesla is a unit of measurement of a magnetic field’s strength. To illustrate the magnet’s relative strength, an MRI machine is 1.5 tesla, and a refrigerator magnet is 0.0025 tesla. Marshall is the co-inventor of Fourier transform ICR, and his group is widely acknowledged as the world leader in the development of Fourier transform ICR techniques and applications.

Marshall said the experiment detailed in Analytical Chemistry can best be described as "molecular spray painting." Here’s how it works:

The receptor protein with a drug stuck to it is dipped into a solvent called "heavy water" (deuterium oxide, or D2O). In the portions of the receptor that can exchange with heavy water (regions not involved in hydrogen bonding), the natural hydrogen atoms are gradually replaced by deuterium atoms, which increase the mass from 1 to 2 mass units. Scientists then dissect the receptor and use the magnet to weigh pieces of it to see which segments of the receptor remain covered up by the drug.

The team saw the potential of probing human protein molecules with this spray-painting technique, but also recognized that the experiment was limited by several factors. Each test that would have to be performed would take anywhere from one minute to several hours, and each measurement would be slow. To ensure the reliability of the experiment, the process would need to be replicated twice more to validate the results, adding additional days to the process.

The paper published in Analytical Chemistry lays out the results of research to improve the technical aspects of the experiment. By utilizing the high-field ICR magnet and its powerful spectrometer, coupled with a sample preparation robot, the scientists were able to extract data that show how the drug alters the dynamics of the receptor upon binding. This application of the experiment can measure changes in a fraction of the time -- and show those changes over time. And the results are highly reproducible.

"This research is important because it gives us a new and very powerful way to probe the interaction between drugs and proteins," said Patrick Griffin, professor of biochemistry and head of drug discovery at Scripps Florida. "Because we’ve now solved many of the technical problems, this technique is sure to play an even larger role in understanding the mechanism of action of many classes of drugs."

Now that the data acquisition has been automated, the next step is automating the data analysis. The amount of data generated by the magnet’s high-test mass spectrometer is staggering: 1 million data points every second. To analyze the data by hand would take a month. With automated software being developed at the magnet lab, the analysis will take just a few minutes.

Alan G. Marshall | EurekAlert!
Further information:
http://www.magnet.fsu.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>