Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A rosy glow

24.10.2001


The beauty of genetic engineering: a fluorescent flower.
Mercuri A. et al.


Only under UV light (bottom) do the petals show their true colours.
Mercuri A. et al.


Genetic engineering gives us the fluorescent daisy.

It’s produced in Italy and guaranteed to make the face of that special someone light up. It’s the luminous bouquet. Under ultraviolet light the apparently normal blooms glow an unearthly green.

"The fluorescent flowers show that genetic engineering can be developed just for beauty," says their developer, Tito Schiva of the Experimental Institute of Floriculture, San Remo. The technique should work for any white flower, Schiva adds1.



"It’s a nice thing," says flower geneticist Erik Souer of the Free University of Amsterdam. "People in a nightclub might like them." The need for ultraviolet light to enjoy the full effect will limit applications, he says: "It wouldn’t be bought by a housewife at a market."

But you won’t be seeing a glow in your florist’s window anytime soon. Schiva’s team has no plans to commercialize the invention. It costs about US$1 million to get a genetically modified organism approved in Italy, and the public is hostile to genetic engineering.

"The regulatory climate in Europe remains a problem for commercialization of genetically engineered flowers," explains John Mason, of the company Florigene, based in Collingwood, Australia. Florigene modifies the colours of carnations, roses and daisies.

The technology will most likely be used to monitor genetically modified crops, says Schiva. His team originally planned to make legitimate hemp crops distinguishable from narcotics - anyone with an ultraviolet torch could detect a fluorescent flower.

Flower power

The bilious blooms owe their glow to green fluorescent protein (GFP). This protein, originally from jellyfish, is one of molecular biologists’ favourite tools. Hitching the GFP gene to a gene of interest and adding both to an organism gives any protein molecules made from the gene a luminous GFP flag.

Scientists use GFP to track molecules as they are shunted around cells, or cancer cells as they migrate around the body. This month, US researchers unveiled piglets for use in organ transplant studies, which have fluorescent snouts and trotters.

GFP has illuminated processes in plant cells before, but this is the first time its eerie glow has been put to decorative purposes.

Schiva’s group initially inserted GFP into plants such as tobacco and sea lavender (Limonium). These flowers’ natural pigment masked GFP. So the team turned to two plants with flowers transparent to ultraviolet light: the prairie gentian (Eustoma grandiflorum) and the daisy (Osteospermum ecklonis). Both make GFP in their flowers to great effect.

The fluorescent fun needn’t stop with green. Proteins related to GFP that fluoresce red in natural light were discovered recently. Putting these into petals "would be a little more spectacular", Souer says.

References
  1. Mercuri, A., Sacchetti, A., De Benedetti, A., Schiva, T. & Alberti, S. Green fluorescent flowers. Plant Science, 161, 961 - 968, (2001).


JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-8.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>