Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A rosy glow

24.10.2001


The beauty of genetic engineering: a fluorescent flower.
Mercuri A. et al.


Only under UV light (bottom) do the petals show their true colours.
Mercuri A. et al.


Genetic engineering gives us the fluorescent daisy.

It’s produced in Italy and guaranteed to make the face of that special someone light up. It’s the luminous bouquet. Under ultraviolet light the apparently normal blooms glow an unearthly green.

"The fluorescent flowers show that genetic engineering can be developed just for beauty," says their developer, Tito Schiva of the Experimental Institute of Floriculture, San Remo. The technique should work for any white flower, Schiva adds1.



"It’s a nice thing," says flower geneticist Erik Souer of the Free University of Amsterdam. "People in a nightclub might like them." The need for ultraviolet light to enjoy the full effect will limit applications, he says: "It wouldn’t be bought by a housewife at a market."

But you won’t be seeing a glow in your florist’s window anytime soon. Schiva’s team has no plans to commercialize the invention. It costs about US$1 million to get a genetically modified organism approved in Italy, and the public is hostile to genetic engineering.

"The regulatory climate in Europe remains a problem for commercialization of genetically engineered flowers," explains John Mason, of the company Florigene, based in Collingwood, Australia. Florigene modifies the colours of carnations, roses and daisies.

The technology will most likely be used to monitor genetically modified crops, says Schiva. His team originally planned to make legitimate hemp crops distinguishable from narcotics - anyone with an ultraviolet torch could detect a fluorescent flower.

Flower power

The bilious blooms owe their glow to green fluorescent protein (GFP). This protein, originally from jellyfish, is one of molecular biologists’ favourite tools. Hitching the GFP gene to a gene of interest and adding both to an organism gives any protein molecules made from the gene a luminous GFP flag.

Scientists use GFP to track molecules as they are shunted around cells, or cancer cells as they migrate around the body. This month, US researchers unveiled piglets for use in organ transplant studies, which have fluorescent snouts and trotters.

GFP has illuminated processes in plant cells before, but this is the first time its eerie glow has been put to decorative purposes.

Schiva’s group initially inserted GFP into plants such as tobacco and sea lavender (Limonium). These flowers’ natural pigment masked GFP. So the team turned to two plants with flowers transparent to ultraviolet light: the prairie gentian (Eustoma grandiflorum) and the daisy (Osteospermum ecklonis). Both make GFP in their flowers to great effect.

The fluorescent fun needn’t stop with green. Proteins related to GFP that fluoresce red in natural light were discovered recently. Putting these into petals "would be a little more spectacular", Souer says.

References
  1. Mercuri, A., Sacchetti, A., De Benedetti, A., Schiva, T. & Alberti, S. Green fluorescent flowers. Plant Science, 161, 961 - 968, (2001).


JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-8.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>