Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clock molecule’s sensitivity to lithium sheds light on bipolar disorder

17.02.2006


Researchers at the University of Pennsylvania School of Medicine discovered that a key receptor protein is a critical component of the internal molecular clock in mammals. What’s more, this molecule –called Rev-erb– is sensitive to lithium and may help shed light on circadian rhythm disorders, including bipolar disorder. The findings, which also provide insight into clock-controlled aspects of metabolism, are reported in this week’s issue of Science.



"We’re interested in the internal control of metabolism because feeding behavior is on a daily cycle, and hormonal activities that regulate this are circadian," says senior author Mitch Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at Penn. "Many studies, including those here at Penn, suggest a relationship between the human circadian clock and metabolism. Proteins are the gears of the clock, and not much is known about what regulates protein levels within the cell."

Rev-erb was known to be a key component of the clock that exists in most cells of the body. Rev-erb inhibits clock genes called bmal and clock, but within a normal 24-hour circadian cycle the Rev-erb protein is destroyed within the cell, allowing bmal and other clock proteins to increase. Among other actions, these clock genes cause Rev-erb to increase, which again inhibits bmal and clock. "The time it takes for that to happen determines the length of the cycle–roughly 24 hours–and keeps the clock going," explains Lazar.


Penn colleague and coauthor Peter Klein, MD, PhD, Assistant Professor of Medicine, discovered a few years ago that the drug lithium, used to treat biopolar illness, inhibits GSK3, an enzyme known to regulate circadian rhythm in several animal species. In the present study, the researchers showed that the destruction of Rev-erb, a receptor shown previously by Lazar and others to play a role in maintaining normal metabolism, is prevented by GSK3 in mouse and human cells. "It’s like pulling a pin out of the gears of the clock, to allow them to turn in a synchronized manner," says Lazar.

Lithium blocks this action of GSK3, tagging Rev-erb for destruction, which leads to activation of clock genes such as bmal1. "We suggest that just as our cells in the incubator need to have their internal clocks reset, maybe this is what happens in some people with circadian disorders," says Lazar. "One effect of lithium may be to reset clocks that become stuck when Rev-erb levels build up."

These results point to Rev-erb as a lithium-sensitive component of the human clock and therefore a possible target for developing new circadian-disorder drugs. Some patients taking lithium have developed kidney toxicity and other problems. Lazar surmises that new treatments that lead to the destruction of Rev-erb would have the potential of providing another point of entry into the circadian pathway.

Noting that Rev-erb is present in metabolically active tissues, Lazar and his team at the Institute for Diabetes, Obesity, and Metabolism are also interested in the relationship between the control of the circadian clock and metabolic diseases such as obesity and diabetes. "There is a dynamic interplay between circadian rhythms and metabolism," Lazar says. "You don’t eat while you are sleeping, and the body needs to take this into account."

Study co-authors are Lei Yin and Jing Wang, both from Penn. The research was funded by the National Institute of Diabetes & Digestive & Kidney Diseases and the National Institute of Mental Health.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>