Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clock molecule’s sensitivity to lithium sheds light on bipolar disorder

17.02.2006


Researchers at the University of Pennsylvania School of Medicine discovered that a key receptor protein is a critical component of the internal molecular clock in mammals. What’s more, this molecule –called Rev-erb– is sensitive to lithium and may help shed light on circadian rhythm disorders, including bipolar disorder. The findings, which also provide insight into clock-controlled aspects of metabolism, are reported in this week’s issue of Science.



"We’re interested in the internal control of metabolism because feeding behavior is on a daily cycle, and hormonal activities that regulate this are circadian," says senior author Mitch Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at Penn. "Many studies, including those here at Penn, suggest a relationship between the human circadian clock and metabolism. Proteins are the gears of the clock, and not much is known about what regulates protein levels within the cell."

Rev-erb was known to be a key component of the clock that exists in most cells of the body. Rev-erb inhibits clock genes called bmal and clock, but within a normal 24-hour circadian cycle the Rev-erb protein is destroyed within the cell, allowing bmal and other clock proteins to increase. Among other actions, these clock genes cause Rev-erb to increase, which again inhibits bmal and clock. "The time it takes for that to happen determines the length of the cycle–roughly 24 hours–and keeps the clock going," explains Lazar.


Penn colleague and coauthor Peter Klein, MD, PhD, Assistant Professor of Medicine, discovered a few years ago that the drug lithium, used to treat biopolar illness, inhibits GSK3, an enzyme known to regulate circadian rhythm in several animal species. In the present study, the researchers showed that the destruction of Rev-erb, a receptor shown previously by Lazar and others to play a role in maintaining normal metabolism, is prevented by GSK3 in mouse and human cells. "It’s like pulling a pin out of the gears of the clock, to allow them to turn in a synchronized manner," says Lazar.

Lithium blocks this action of GSK3, tagging Rev-erb for destruction, which leads to activation of clock genes such as bmal1. "We suggest that just as our cells in the incubator need to have their internal clocks reset, maybe this is what happens in some people with circadian disorders," says Lazar. "One effect of lithium may be to reset clocks that become stuck when Rev-erb levels build up."

These results point to Rev-erb as a lithium-sensitive component of the human clock and therefore a possible target for developing new circadian-disorder drugs. Some patients taking lithium have developed kidney toxicity and other problems. Lazar surmises that new treatments that lead to the destruction of Rev-erb would have the potential of providing another point of entry into the circadian pathway.

Noting that Rev-erb is present in metabolically active tissues, Lazar and his team at the Institute for Diabetes, Obesity, and Metabolism are also interested in the relationship between the control of the circadian clock and metabolic diseases such as obesity and diabetes. "There is a dynamic interplay between circadian rhythms and metabolism," Lazar says. "You don’t eat while you are sleeping, and the body needs to take this into account."

Study co-authors are Lei Yin and Jing Wang, both from Penn. The research was funded by the National Institute of Diabetes & Digestive & Kidney Diseases and the National Institute of Mental Health.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>