Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists model 900 cell receptors, drug targets

17.02.2006


Models could help speed discovery of new drugs


This GPCR’s specific function is still unknown. The database could help scientists determine the function of receptors like this one, potentially uncovering new drug targets.



In an important step toward accelerating drug discovery, researchers have created computer models of more than 900 cell receptors from a class of proteins known to be important drug targets. The models, which are now freely available to noncommercial users, promise to help scientists narrow their research inquiries, potentially speeding up the discovery of new drug compounds. The research appears in the February 17, 2006 issue of the Public Library of Science Computational Biology.

"This is the first time anyone has modeled them all with an algorithm that improves the accuracy of the structure," said Jeffrey Skolnick Georgia Research Alliance Eminent Scholar in Computational Systems Biology at the Georgia Institute of Technology. "I think it’s going to have significant impact, because it’s a major class of drug design."


One of the hottest areas in drug research, rational drug design uses three-dimensional computer simulations to study how different drugs and their cellular targets interact with each other. This technique can help research teams discover which compounds are most likely to achieve the desired results, potentially accelerating the speed of drug research and allowing for the discovery of reactions that may not have been found through traditional means.

G protein-coupled receptors are targeted by an estimated one-third of all drugs and convey chemical signals from the outside of cells to the inside. But because they tend to fall apart once they’re removed from the outer membrane of the cell, scientists have only been able to solve the three-dimensional structure for a few of them. And those aren’t even good drug targets. Until now, researchers wanting to model any of the others have had to base their models on the structures of the existing, non-pharmacological receptors. Since those receptors, according to Skolnick, are evolutionarily distant from the proteins thought to be good drug targets, the models aren’t very accurate.

Using an algorithm they developed known as TASSER, a team of researchers led by Skolnick, then at the University of Buffalo, created three-dimensional structures of all the GPCRs below 500 amino acids in the human genome.

"The solved GPCRs are of the same approximate shape as the ones known to be good drug targets, only they differ in details. But it’s the details, the packing of the helixes, their angles, their size, that differentiate the drug binding sites of GPCRs from one another," said Skolnick, "TASSER appears to have the capacity to give us a reasonable picture of the structure of these proteins."

Of the 907 models TASSER has helped create, Skolnick estimates that about 820 are accurate enough to be useful to researchers.

"There’s still room for significant improvement. They’re like cartoons – they kind of look like reality sometimes, but they can be used to help design experiments," said Skolnick.

The mission of the Center for the Study of Systems Biology at Georgia Tech, of which Skolnick is the director, is to essentially simulate life on a computer by building accurate three-dimensional models of the components of life, such as individual proteins and collections of proteins.

"The idea is to simulate these proteins, introduce a drug structure and see how they interact," said Skolnick.

The next step for Skolnick is solving the structure of proteins that have been implicated as a factor in various types of cancer.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>