Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists model 900 cell receptors, drug targets

17.02.2006


Models could help speed discovery of new drugs


This GPCR’s specific function is still unknown. The database could help scientists determine the function of receptors like this one, potentially uncovering new drug targets.



In an important step toward accelerating drug discovery, researchers have created computer models of more than 900 cell receptors from a class of proteins known to be important drug targets. The models, which are now freely available to noncommercial users, promise to help scientists narrow their research inquiries, potentially speeding up the discovery of new drug compounds. The research appears in the February 17, 2006 issue of the Public Library of Science Computational Biology.

"This is the first time anyone has modeled them all with an algorithm that improves the accuracy of the structure," said Jeffrey Skolnick Georgia Research Alliance Eminent Scholar in Computational Systems Biology at the Georgia Institute of Technology. "I think it’s going to have significant impact, because it’s a major class of drug design."


One of the hottest areas in drug research, rational drug design uses three-dimensional computer simulations to study how different drugs and their cellular targets interact with each other. This technique can help research teams discover which compounds are most likely to achieve the desired results, potentially accelerating the speed of drug research and allowing for the discovery of reactions that may not have been found through traditional means.

G protein-coupled receptors are targeted by an estimated one-third of all drugs and convey chemical signals from the outside of cells to the inside. But because they tend to fall apart once they’re removed from the outer membrane of the cell, scientists have only been able to solve the three-dimensional structure for a few of them. And those aren’t even good drug targets. Until now, researchers wanting to model any of the others have had to base their models on the structures of the existing, non-pharmacological receptors. Since those receptors, according to Skolnick, are evolutionarily distant from the proteins thought to be good drug targets, the models aren’t very accurate.

Using an algorithm they developed known as TASSER, a team of researchers led by Skolnick, then at the University of Buffalo, created three-dimensional structures of all the GPCRs below 500 amino acids in the human genome.

"The solved GPCRs are of the same approximate shape as the ones known to be good drug targets, only they differ in details. But it’s the details, the packing of the helixes, their angles, their size, that differentiate the drug binding sites of GPCRs from one another," said Skolnick, "TASSER appears to have the capacity to give us a reasonable picture of the structure of these proteins."

Of the 907 models TASSER has helped create, Skolnick estimates that about 820 are accurate enough to be useful to researchers.

"There’s still room for significant improvement. They’re like cartoons – they kind of look like reality sometimes, but they can be used to help design experiments," said Skolnick.

The mission of the Center for the Study of Systems Biology at Georgia Tech, of which Skolnick is the director, is to essentially simulate life on a computer by building accurate three-dimensional models of the components of life, such as individual proteins and collections of proteins.

"The idea is to simulate these proteins, introduce a drug structure and see how they interact," said Skolnick.

The next step for Skolnick is solving the structure of proteins that have been implicated as a factor in various types of cancer.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>