Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth Rx: A microbial biotechnology prescription for global environmental health

16.02.2006


Water. Waste. Energy. This trio of problems is among the greatest challenges to the environmental health of society. Water purification alone is becoming more problematic in the world due to our increasingly reliance on contaminated sources, such as polluted rivers, lakes and groundwater.



"All of these issues are closely interrelated," says Bruce Rittmann, director of the Center for Environmental Biotechnology in the Biodesign Institute at ASU. "For example, most of the pollution wastes that we worry about are really just energy put in the wrong place and causing trouble."

It was to address these challenges that Rittmann, along with a group of international colleagues, gathered at a symposium held at ASU last April to work on a roadmap for biology-based solutions to turn these threats into opportunities. The culmination of the workshop was a paper published as the cover story in the latest issue of Environmental Science & Technology (http://pubs.acs.org/subscribe/journals/esthag/40/i04/html/021506feature_rittmann.html).


Their solution: a synergistic marriage of two distinct disciplines, microbial ecology and environmental biotechnology. "Together, they offer much promise for helping society deal with some of its greatest challenges in environmental quality, sustainability, security, and human health," Rittmann stated in an excerpt from the paper.

For the majority of Earth’s 6 billion year history, microbes ruled, spreading to every nook and cranny on the globe, from geothermal vents on the ocean’s floor to arctic permafrost. Now, uncovering and categorizing this abundant biodiversity is one of the chief goals of scientists in the field of microbial ecology – and may be the key to helping the planet –by putting these rich microbial communities to work to help serve the needs of society through environmental biotechnology.

Leading the marriage are revolutionary changes in compiling vast amounts of genetic information on microbial organisms through state-of-the-art DNA-based techniques. Identifying just a single microbial specimen is a daunting task, considering, that there may be trillions of bacteria in every liter of water.

"We have hardly begun to tap the potential that is already provided by nature," said Rittmann.

The beginnings of microbial ecology started back in the 1940s and 1950s, when microbial cultures were initially sorted by size and shape. Before the modern DNA-based techniques, the function of a microorganism was assigned by selective culturing on agar plates or a nutrient-rich broth and selecting on the basis of metabolic function, which turned out largely to be a hit-or-miss approach.

"You would find a few organisms that just grew like crazy," said Rittmann. "We call them ’weeds’ because they take advantage of the luxurious conditions found in the lab but they might not be the ones who are important out in the real world, where it isn’t so luxurious."

To aid in the identification and function of individual microorganisms and communities, the first use of modern molecular biology tools began in the early 1980s, with the advent of polymerase chain reaction (PCR) amplification of microbial DNA and a new view of the evolution of organisms based on their ribosomal RNA.

These technologies have advanced into high-throughput genomic and proteomic protocols that can detect specific genes and their metabolic functions with great precision and detail. Other methods can now reconstruct entire genomes of what were once "unculturable" microbes.

Rittmann refers to this early period as a "profitable stamp collecting" approach – "absolutely vital in providing a cathedral foundation of knowledge; yet we now need to focus more on utilizing this knowledge."

Enter the field of environmental biotechnology. Environmental biotechnology has been around for almost a century, first adapted widely in the 1910s and 1920s when wastewater was cleaned up by a bacterial-laden sludge that speeds up the breakdown of the organic material in sewage.

With recent advances in biology, materials, computing, and engineering, environmental biotechnologists now are able to use microbial communities for a wealth of services to society. These include detoxifying contaminated water, wastewater, sludge, sediment, or soil; capturing renewable energy from biomass; sensing contaminants or pathogens; and protecting the public from dangerous exposure to pathogens.

Rittmann’s center puts some of these technologies into service, identifying microorganisms that help clean up pollutants such as trichloroethene (TCE) and perchlorate from the water supply and generating electricity from wastewater.

"Scientifically, it might be easiest to let the microbes convert the energy is organic wastes directly to electricity. However, they also can generate useful fuels, such as methane and hydrogen, and we are pursuing research on all of these renewable-energy forms."

Rittmann believes the key to achieving success through microbial ecology and biotechnology is to take advantage of microbial diversity as much as possible, particularly having different microbe to perform the same role. "It usually isn’t just one organism, a superbug or magic bullet," says Rittmann. "Instead, the best results require a community of microorganisms."

Rittmann is motivated by the huge benefits that environmental biotechnology and microbial communities can bring to society. "I think if we could succeed in capturing the energy out of waste materials, this would be a world-transforming technology and a real step forward to using more renewable forms of energy and much less reliance on fossil fuel."

Joe Caspermeyer | EurekAlert!
Further information:
http://pubs.acs.org/subscribe/journals/esthag/40/i04/html/021506feature_rittmann.html
http://www.asu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>