Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF research pinpoints brain molecule’s role in developing addiction

16.02.2006


A molecule in the brain essential for wakefulness and appetite has been found to play a central role in strengthening the neuron connections that lead to addiction. The discovery of how the neuropeptide orexin works at the molecular level makes it a strong new target for potential drugs to treat addiction, the researchers say.



The discovery by neuroscientists at UCSF’s Ernest Gallo Clinic and Research Center is being reported February 16 in the journal Neuron.

The research focused on orexin’s role in strengthening communication between neurons that release dopamine, a brain chemical central to learning and memory. The strengthened communication is known to play a key role in the experience of a drug high and subsequent drug craving.


Orexin is produced in the brain’s lateral hypothalmus (LH) region. The scientists demonstrated in studies of rats that orexin acutely enhances the ability of receptors at dopamine neuron synapses – known as NMDA receptors – to promote the release of dopamine.

They showed that orexin creates a long-lasting potential for strengthened transmission between neurons of the LH region and dopamine-releasing neurons in a brain region known as the ventral tegmental area (VTA). This fundamental change in the neurons, called synaptic plasticity, is known to be critical for new learning and memory formation essential to addiction.

The researchers also showed that blocking normal orexin action in the VTA weakened this critical neuron-to-neuron communication and reversed cocaine-craving behavior in rats.

"This is an exciting finding," said Antonello Bonci, MD, senior author of the paper and UCSF associate professor of neurology, Howard J. Weinberger Chair in Addiction Research and principal investigator at the Gallo Center. "Not only can we see that orexin directly enables the neural communication underlying the development of addiction, but the research points to a novel target in the circuitry of addiction for new medicines to counter the craving for drugs of abuse, or to prevent relapse."

Studies have shown that addicts seek treatment during periods of abstinence. The team’s demonstration of orexin’s ability to counter cocaine-craving in mice suggests its promise in preventing cured addicts from relapsing to their drug habit, he adds.

"We now know that orexin strengthens neural communication in the VTA and is important for the development of addictive behaviors," said Stephanie Borgland, PhD, lead author of the paper and associate research scientist at the Gallo Center. "Now we are trying to determine if blocking orexin signaling can reverse already well established addictions."

The scientists caution that any potential drug to target orexin must be designed to avoid triggering narcolepsy or dampening orexin’s normal role in maintaining an appetite.

Borgland used electrophysiological techniques to assess the activity of NMDA receptors at dopamine neuron synapses in the VTA--a measure of the strength of neural connections. She observed that orexin greatly boosted NMDA receptors, an effect expected to increase the output of dopamine neurons to their targets.

"The research suggests that heightened motivation for drugs of abuse involve the same pathway that motivates one to eat when hungry," Bonci said. "In normal physiological situations, orexin is released during ’heightened metabolic states,’ such as when an animal is hungry. But when the animal is addicted to drugs of abuse, this motivational neural pathway is enhanced, resulting in increased orexin release onto dopamine neurons of the VTA."

The discovery of orexin’s molecular role explains why narcoleptic patients, whose LH neurons fail to produce normal amounts of the neuropeptide, rarely become addicted when medicated with amphetamines, in contrast to most people who receive the drugs. Lacking normal orexin production, narcoleptics are simply less prone to addiction.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>