Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF research pinpoints brain molecule’s role in developing addiction

16.02.2006


A molecule in the brain essential for wakefulness and appetite has been found to play a central role in strengthening the neuron connections that lead to addiction. The discovery of how the neuropeptide orexin works at the molecular level makes it a strong new target for potential drugs to treat addiction, the researchers say.



The discovery by neuroscientists at UCSF’s Ernest Gallo Clinic and Research Center is being reported February 16 in the journal Neuron.

The research focused on orexin’s role in strengthening communication between neurons that release dopamine, a brain chemical central to learning and memory. The strengthened communication is known to play a key role in the experience of a drug high and subsequent drug craving.


Orexin is produced in the brain’s lateral hypothalmus (LH) region. The scientists demonstrated in studies of rats that orexin acutely enhances the ability of receptors at dopamine neuron synapses – known as NMDA receptors – to promote the release of dopamine.

They showed that orexin creates a long-lasting potential for strengthened transmission between neurons of the LH region and dopamine-releasing neurons in a brain region known as the ventral tegmental area (VTA). This fundamental change in the neurons, called synaptic plasticity, is known to be critical for new learning and memory formation essential to addiction.

The researchers also showed that blocking normal orexin action in the VTA weakened this critical neuron-to-neuron communication and reversed cocaine-craving behavior in rats.

"This is an exciting finding," said Antonello Bonci, MD, senior author of the paper and UCSF associate professor of neurology, Howard J. Weinberger Chair in Addiction Research and principal investigator at the Gallo Center. "Not only can we see that orexin directly enables the neural communication underlying the development of addiction, but the research points to a novel target in the circuitry of addiction for new medicines to counter the craving for drugs of abuse, or to prevent relapse."

Studies have shown that addicts seek treatment during periods of abstinence. The team’s demonstration of orexin’s ability to counter cocaine-craving in mice suggests its promise in preventing cured addicts from relapsing to their drug habit, he adds.

"We now know that orexin strengthens neural communication in the VTA and is important for the development of addictive behaviors," said Stephanie Borgland, PhD, lead author of the paper and associate research scientist at the Gallo Center. "Now we are trying to determine if blocking orexin signaling can reverse already well established addictions."

The scientists caution that any potential drug to target orexin must be designed to avoid triggering narcolepsy or dampening orexin’s normal role in maintaining an appetite.

Borgland used electrophysiological techniques to assess the activity of NMDA receptors at dopamine neuron synapses in the VTA--a measure of the strength of neural connections. She observed that orexin greatly boosted NMDA receptors, an effect expected to increase the output of dopamine neurons to their targets.

"The research suggests that heightened motivation for drugs of abuse involve the same pathway that motivates one to eat when hungry," Bonci said. "In normal physiological situations, orexin is released during ’heightened metabolic states,’ such as when an animal is hungry. But when the animal is addicted to drugs of abuse, this motivational neural pathway is enhanced, resulting in increased orexin release onto dopamine neurons of the VTA."

The discovery of orexin’s molecular role explains why narcoleptic patients, whose LH neurons fail to produce normal amounts of the neuropeptide, rarely become addicted when medicated with amphetamines, in contrast to most people who receive the drugs. Lacking normal orexin production, narcoleptics are simply less prone to addiction.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>