Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF research pinpoints brain molecule’s role in developing addiction

16.02.2006


A molecule in the brain essential for wakefulness and appetite has been found to play a central role in strengthening the neuron connections that lead to addiction. The discovery of how the neuropeptide orexin works at the molecular level makes it a strong new target for potential drugs to treat addiction, the researchers say.



The discovery by neuroscientists at UCSF’s Ernest Gallo Clinic and Research Center is being reported February 16 in the journal Neuron.

The research focused on orexin’s role in strengthening communication between neurons that release dopamine, a brain chemical central to learning and memory. The strengthened communication is known to play a key role in the experience of a drug high and subsequent drug craving.


Orexin is produced in the brain’s lateral hypothalmus (LH) region. The scientists demonstrated in studies of rats that orexin acutely enhances the ability of receptors at dopamine neuron synapses – known as NMDA receptors – to promote the release of dopamine.

They showed that orexin creates a long-lasting potential for strengthened transmission between neurons of the LH region and dopamine-releasing neurons in a brain region known as the ventral tegmental area (VTA). This fundamental change in the neurons, called synaptic plasticity, is known to be critical for new learning and memory formation essential to addiction.

The researchers also showed that blocking normal orexin action in the VTA weakened this critical neuron-to-neuron communication and reversed cocaine-craving behavior in rats.

"This is an exciting finding," said Antonello Bonci, MD, senior author of the paper and UCSF associate professor of neurology, Howard J. Weinberger Chair in Addiction Research and principal investigator at the Gallo Center. "Not only can we see that orexin directly enables the neural communication underlying the development of addiction, but the research points to a novel target in the circuitry of addiction for new medicines to counter the craving for drugs of abuse, or to prevent relapse."

Studies have shown that addicts seek treatment during periods of abstinence. The team’s demonstration of orexin’s ability to counter cocaine-craving in mice suggests its promise in preventing cured addicts from relapsing to their drug habit, he adds.

"We now know that orexin strengthens neural communication in the VTA and is important for the development of addictive behaviors," said Stephanie Borgland, PhD, lead author of the paper and associate research scientist at the Gallo Center. "Now we are trying to determine if blocking orexin signaling can reverse already well established addictions."

The scientists caution that any potential drug to target orexin must be designed to avoid triggering narcolepsy or dampening orexin’s normal role in maintaining an appetite.

Borgland used electrophysiological techniques to assess the activity of NMDA receptors at dopamine neuron synapses in the VTA--a measure of the strength of neural connections. She observed that orexin greatly boosted NMDA receptors, an effect expected to increase the output of dopamine neurons to their targets.

"The research suggests that heightened motivation for drugs of abuse involve the same pathway that motivates one to eat when hungry," Bonci said. "In normal physiological situations, orexin is released during ’heightened metabolic states,’ such as when an animal is hungry. But when the animal is addicted to drugs of abuse, this motivational neural pathway is enhanced, resulting in increased orexin release onto dopamine neurons of the VTA."

The discovery of orexin’s molecular role explains why narcoleptic patients, whose LH neurons fail to produce normal amounts of the neuropeptide, rarely become addicted when medicated with amphetamines, in contrast to most people who receive the drugs. Lacking normal orexin production, narcoleptics are simply less prone to addiction.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>