Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF research pinpoints brain molecule’s role in developing addiction

16.02.2006


A molecule in the brain essential for wakefulness and appetite has been found to play a central role in strengthening the neuron connections that lead to addiction. The discovery of how the neuropeptide orexin works at the molecular level makes it a strong new target for potential drugs to treat addiction, the researchers say.



The discovery by neuroscientists at UCSF’s Ernest Gallo Clinic and Research Center is being reported February 16 in the journal Neuron.

The research focused on orexin’s role in strengthening communication between neurons that release dopamine, a brain chemical central to learning and memory. The strengthened communication is known to play a key role in the experience of a drug high and subsequent drug craving.


Orexin is produced in the brain’s lateral hypothalmus (LH) region. The scientists demonstrated in studies of rats that orexin acutely enhances the ability of receptors at dopamine neuron synapses – known as NMDA receptors – to promote the release of dopamine.

They showed that orexin creates a long-lasting potential for strengthened transmission between neurons of the LH region and dopamine-releasing neurons in a brain region known as the ventral tegmental area (VTA). This fundamental change in the neurons, called synaptic plasticity, is known to be critical for new learning and memory formation essential to addiction.

The researchers also showed that blocking normal orexin action in the VTA weakened this critical neuron-to-neuron communication and reversed cocaine-craving behavior in rats.

"This is an exciting finding," said Antonello Bonci, MD, senior author of the paper and UCSF associate professor of neurology, Howard J. Weinberger Chair in Addiction Research and principal investigator at the Gallo Center. "Not only can we see that orexin directly enables the neural communication underlying the development of addiction, but the research points to a novel target in the circuitry of addiction for new medicines to counter the craving for drugs of abuse, or to prevent relapse."

Studies have shown that addicts seek treatment during periods of abstinence. The team’s demonstration of orexin’s ability to counter cocaine-craving in mice suggests its promise in preventing cured addicts from relapsing to their drug habit, he adds.

"We now know that orexin strengthens neural communication in the VTA and is important for the development of addictive behaviors," said Stephanie Borgland, PhD, lead author of the paper and associate research scientist at the Gallo Center. "Now we are trying to determine if blocking orexin signaling can reverse already well established addictions."

The scientists caution that any potential drug to target orexin must be designed to avoid triggering narcolepsy or dampening orexin’s normal role in maintaining an appetite.

Borgland used electrophysiological techniques to assess the activity of NMDA receptors at dopamine neuron synapses in the VTA--a measure of the strength of neural connections. She observed that orexin greatly boosted NMDA receptors, an effect expected to increase the output of dopamine neurons to their targets.

"The research suggests that heightened motivation for drugs of abuse involve the same pathway that motivates one to eat when hungry," Bonci said. "In normal physiological situations, orexin is released during ’heightened metabolic states,’ such as when an animal is hungry. But when the animal is addicted to drugs of abuse, this motivational neural pathway is enhanced, resulting in increased orexin release onto dopamine neurons of the VTA."

The discovery of orexin’s molecular role explains why narcoleptic patients, whose LH neurons fail to produce normal amounts of the neuropeptide, rarely become addicted when medicated with amphetamines, in contrast to most people who receive the drugs. Lacking normal orexin production, narcoleptics are simply less prone to addiction.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>