Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetics of muscular dystophy


Various forms of human muscular dystrophy result from mutations in genes encoding proteins of the nuclear envelope. A new paper in the February 15th issue of G&D reveals how.

Ten human hereditary laminopathies, including Emery-Dreifuss muscular dystrophy (EDMD), are associated with mutations in the LMNA gene that codes for the nuclear filament proteins, lamins A and C. Dr. Brain Kennedy and colleagues at the University of Washington have used a mouse model of EDMD to elucidate the mechanism by which altered expression of A-type lamins causes progressive muscular degeneration.

Adult skeletal muscle is derived from satellite stem cells, known as myoblasts, which differentiate into mature skeletal muscle cells. While several different types of proteins are known to be involved in myogenesis, the role of A-type lamins in muscle differentiation has remained unclear. Dr. Kennedy and colleagues used Lmna-deficient cells, as well as siRNA-mediated knock-down of Lmna and emerin (a lamin-associated protein) to study the affect of decreased A-type lamin or emerin expression on myoblast differentiation.

The authors found that decreased expression of A-type lamins or emerin changes the expression levels of proteins involved in myogenesis (MyoD, pRB, desmin and M-cadherin), and reduces myoblast differentiation potential. Furthermore, forced expression of MyoD or desmin in Lmna-deficient myoblasts restores this defect. By identifying key myogeneic differentiation factors that are altered in Lmna-deificient cells, Dr. Kennedy and colleagues provide new mechanistic insight into how LMNA mutations contribute to EDMD.

Heather Cosel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht How Does Friendly Fire Happen in the Pancreas?
21.10.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>