Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics of muscular dystophy

15.02.2006


Various forms of human muscular dystrophy result from mutations in genes encoding proteins of the nuclear envelope. A new paper in the February 15th issue of G&D reveals how.



Ten human hereditary laminopathies, including Emery-Dreifuss muscular dystrophy (EDMD), are associated with mutations in the LMNA gene that codes for the nuclear filament proteins, lamins A and C. Dr. Brain Kennedy and colleagues at the University of Washington have used a mouse model of EDMD to elucidate the mechanism by which altered expression of A-type lamins causes progressive muscular degeneration.

Adult skeletal muscle is derived from satellite stem cells, known as myoblasts, which differentiate into mature skeletal muscle cells. While several different types of proteins are known to be involved in myogenesis, the role of A-type lamins in muscle differentiation has remained unclear. Dr. Kennedy and colleagues used Lmna-deficient cells, as well as siRNA-mediated knock-down of Lmna and emerin (a lamin-associated protein) to study the affect of decreased A-type lamin or emerin expression on myoblast differentiation.


The authors found that decreased expression of A-type lamins or emerin changes the expression levels of proteins involved in myogenesis (MyoD, pRB, desmin and M-cadherin), and reduces myoblast differentiation potential. Furthermore, forced expression of MyoD or desmin in Lmna-deficient myoblasts restores this defect. By identifying key myogeneic differentiation factors that are altered in Lmna-deificient cells, Dr. Kennedy and colleagues provide new mechanistic insight into how LMNA mutations contribute to EDMD.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>