Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aggressive subtype of breast cancer displays ’misbehavior’ of X chromosomes

14.02.2006


Basal-like breast cancers (BLC) are highly aggressive tumors with a relatively poor prognosis that account for approximately 15% of sporadic human breast cancer. Sporadic BLC share certain characteristics with most of the breast cancers from patients carrying a germline mutation in the BRCA1 breast cancer suppressor gene. Among their similarities, sporadic BLC and BRCA1 cancers do not express the estrogen receptor and do not overproduce HER2 protein. Thus, therapeutics targeting estrogen receptor or targeting HER2 currently used in treating some other types of breast cancers are unlikely to be useful for treating these breast cancers. However, sporadic BLC contain normal BRCA1 genes. A new study published in the February issue of Cancer Cell provides evidence that X chromosome abnormalities contribute to the pathogenesis of both the sporadic BRCA1 normal BLC and the inherited BRCA1 mutant breast cancer.



Defects in the BRCA1 gene have been linked to an abnormality in a mechanism that contributes to the stability of sex chromosomes in women. In mammals, male cells contain an X and a Y chromosome, while female cells contain two X chromosomes. Normally, a process called X inactivation occurs in early female embryos; it leads to silencing of one of the two X chromosomes in derivative embryonic and adult somatic cells. The authors had previously shown that loss of the inactive X chromosome (Xi) occurs in BRCA1 mutation-carrying breast cancers. Given the similarities between BRCA1-associated cancer and sporadic BLC, Drs. Andrea Richardson, Zhigang Wang, Dirk Iglehart, David M. Livingston, and Shridar Ganesan, and colleagues from the Dana-Farber Cancer Institute and Brigham and Women’s Hospital, examined whether sporadic BLC display abnormalities in the management of the Xi chromosome.

The researchers found that, like BRCA1-associated cancers, most sporadic BLC have consistently lost the Xi and displayed a higher than normal number of apparently active X chromosomes These tumors also showed increased expression of a small, but specific, subset of X chromosomal genes. Interestingly, since all sporadic BLC analyzed displayed normal BRCA1 genes and gene expression, it was hypothesized that BLC have acquired defects in genes other than BRCA1 that contribute to some of the same cellular pathways as those that are defective in BRCA1-associated cancers. One wonders whether one or more of these pathways support(s) the maintenance of a normal Xi. "These results provide new insight into possible pathogenic mechanisms underlying both sporadic and BRCA1-associated basal-like breast cancer," explain the authors. Ideally, a better understanding of how two active X chromosomes are associated with cancer development and progression could lead to new insights into rational treatment strategies for these subtypes of breast cancer.

Heidi Hardman | EurekAlert!
Further information:
http://www.cancercell.org
http://wwwcell.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>