Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Good DNA Goes Bad

13.02.2006


“Backward” DNA leads to DNA breaks associated with leukemia, study finds



When otherwise normal DNA adopts an unusual shape called Z-DNA, it can lead to the kind of genetic instability associated with cancers such as leukemia and lymphoma, according to a study by researchers at The University of Texas M. D. Anderson Cancer Center.

The study, issued in advance of the Feb. 21 edition of the Proceedings of the National Academy of Sciences, demonstrates for the first time that the oddly shaped DNA can cause DNA breaks in mammalian cells. Interestingly, these sequences prone to forming Z-DNA are often found in genetic “hot spots,” areas of DNA known to be prone to the genetic rearrangements associated with cancer. About 90 percent of patients with Burkitt’s lymphoma, for example, have DNA breaks that map to regions with the potential to form these odd DNA structures.


“Our study shows that DNA itself can act as a mutagen, resulting in genetic instability,” says Karen Vasquez, Ph.D., lead author of the study and assistant professor of carcinogenesis at M. D. Anderson’s Science Park Research Division, Smithville, Texas. “The discovery opens up a new field of inquiry into the role of DNA shape in genomic instability and cancer.”

Imagine untwisting the DNA ladder and then winding it up the other way. The result is a twisted mess with segments jutting out left and right, and the all important base pairs that hold the DNA code zigzagging in a jagged zipper shape. Scientists call this left-hand twist Z-DNA. This is a far cry from the graceful right-hand twisted helix that has become an iconic symbol of biology. It just doesn’t look right, and it doesn’t act right either, according to Vasquez. This awkward shape puts strain on the DNA, and as Vasquez and her colleagues show, can cause the DNA molecule to break completely apart.

Scientists have known for many years that DNA can take shapes other than the typical twisted ladder form, but they weren’t sure how often these alternate shapes occur inside cells.

Researchers who study these shapes had previously shown that Z-DNA can form only at certain DNA sequences because the shapes of the bases themselves contribute to Z-DNA formation. For example, the sequence CG repeated more than 14 times in a row is prone to forming Z-DNA, while the sequence AT is not as efficient at forming this structure. Analysis of the genome reveals that DNA sequences prone to forming the Z-DNA structure occur in 0.25 percent of the genome, according to Vasquez.

She and her colleagues decided to find out whether Z-DNA itself had any effect on the DNA stability. To do that, post-doctoral fellow Guliang Wang, Ph.D., made pieces of DNA designed to form the Z-DNA shape. The researchers then introduced these segments of DNA, called plasmids, into bacterial cells and human cells in the laboratory. They then broke apart the cells and examined what happens to the DNA. They found that in bacterial cells, the Z-DNA caused small deletions or insertions of one or two DNA bases. But in human cells, the introduced Z-DNA led to large-scale deletions and rearrangements of the DNA molecule.

“We discovered that bacterial cells and human cells process the Z-DNA in different ways,” she says. “We aren’t sure why, but we think that the DNA repair machinery may be involved in processing the Z-DNA structure differently in bacteria versus human cells.”

Since formation of Z-DNA is naturally occurring and can exist in the genome, the scientists next want to understand why cells can sometimes process the structure without creating double-stranded breaks. They also want to know why certain places in the genome become “hot spots” for these breaks, while other seemingly similar areas do not.

“If we could understand the players involved in this process, we might be able to prevent the generation of these breaks,” says Vasquez. “For example, if certain types of cell stress lead to breaks, we might be able to find ways to reduce those stresses and prevent breaks.”

Senior research assistant Laura Christensen also contributed to the research. The study was supported by grants from the National Cancer Institute and the National Institute of Environmental Health Sciences, as well as an Odyssey fellowship to Guliang Wang from M. D. Anderson Cancer Center.

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>