Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuronal Receptor Response May Help Explain Alzheimer’s Memory Loss

13.02.2006


Based on laboratory research, scientists at Georgetown University Medical Center have a new theory as to why people with Alzheimer’s disease have trouble performing even the simplest memory tasks, such as remembering a family member’s name.



That’s because they discovered a physical link between apolipoprotein E (APOE), the transport molecules known to play a role in development of the disease, and glutamate, a brain chemical necessary for establishing human memory.

In a study published in the Journal of Biological Chemistry, the research team specifically found that receptors on the outside of brain nerve cells (neurons) that bind on to APOE and glutamate are connected on the surface of neurons, separated from each other by only a small protein.


While the researchers don’t know why these receptors are linked together, they say inefficient or higher-than-average levels of APOE in the brain could possibly be clogging these binding sites, preventing glutamate from activating the processes necessary to form memories.

“We have found out that two receptors previously thought to have nothing to do with each other do, in fact, interact, leading us to conclude that APOE affects the NMDA glutamate channel that is important in memory,” says the study’s senior author, G. William Rebeck, PhD, associate professor of neuroscience in Georgetown’s Biomedical Graduate Research Organization.

The researchers also hypothesize that this interaction might have something to do with development of Alzheimer’s disease, although they stress that at this early stage of research, this is impossible to prove.

Rebeck and first author Hyang-Sook Hoe, PhD, also of Georgetown, say that laboratory work now underway is attempting to unravel the relationship between APOE and NMDA receptors.

APOE is a protein that helps shuttle cholesterol and other non-soluble lipid particles around the body, moving these substances to where they are needed. All cells have receptors that bind on to APOE so that they can use lipids as needed, such as for quick energy, to store as fat for later use, or to repair wounds.

But researchers now know that APOE does more than distribute lipids, especially in the brain. About a decade ago, scientists linked APOE4, one of the three common forms of APOE, to development of Alzheimer’s disease, although the biological link between the protein and neurodegenerative diseases such as Alzheimer’s is not clear.

Based on recent research, Rebeck and others suspect that, in the brain, APOE also acts as a transporter, picking up lipids and perhaps other material that result from normal brain tissue wear and tear, or from trauma, and moving it to where it can be used or can be cleared away from the brain. Work in Rebeck’s lab found that APOE receptor 2 (ApoEr2), one of the eight different APOE receptor types, is crucial to both the development and operation of a normal brain.

Glutamate is a substance released at the synapse of neurons — the junction between one nerve cell and the next through which chemical messages are transmitted. Glutamate increases the strength of a synaptic response following stimulation. The NMDA glutamate receptor binds on to the drug NMDA, and also on to glutamate, an excitatory neurotransmitter that also stimulates nerve cell activity. Researchers know that the NMDA receptor is needed to produce the long-lasting synaptic response that is necessary in order to establish, or “lay down,” memory, Rebeck says. “The molecular basis of memory depends on NMDA receptor.”

In work leading up to this study, Rebeck and the research team found that adding APOE to neurons in laboratory culture blocked NMDA receptors. In this study, they confirmed through a series of experiments that the receptors for APOE and NMDA interacted, and that the protein that linked the two was PSD95, often found in neural synaptic junctions. Together, they form a multiprotein complex that could presumably be activated by either APOE, NMDA or glutamate.

Rebeck suspects that the APOE4 variant — the one linked to Alzheimer’s disease — is less efficient at removing lipid debris in the brain than is APOE2 or APOE3, and because of this, brain cells secrete more of the faulty protein to do the job. If too much APOE ends up binding to the APOE/NMDA receptor, one of two things could possibly happen, Rebeck says. In one scenario, the receptor becomes over-stimulated due to the accumulating presence of APOE, which could trigger a process called excitotoxicity that results in death of the neruons. Or, in the presence of damage and secreted APOE, the receptor “turns down” its activity — thus, hampering memory formation — until the brain is repaired. “Having damage around tells the brain not to think too much for awhile,” Rebeck says. But if APOE4 cannot clear up accumulating damage, the ability to make new memories, and use old ones, may be increasingly lost.

“This is, of course, speculation, but now we have new avenues in which we can explore the molecular basis of memory and possibly Alzheimer’s disease,” Rebeck says.

The study was funded by the NIH. Co-authors include Ana Pocivavsek and Geetaanjali Chakraborty also of the Department of Neuroscience, Zhanyan Fu, PhD, and Stefano Vicini, PhD, of the Department of Physiology and Biophysics at Georgetown University Medical Center, and Michael D. Ehlers, PhD, of Duke University Medical Center.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO).

Liz McDonald | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>