Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuronal Receptor Response May Help Explain Alzheimer’s Memory Loss

13.02.2006


Based on laboratory research, scientists at Georgetown University Medical Center have a new theory as to why people with Alzheimer’s disease have trouble performing even the simplest memory tasks, such as remembering a family member’s name.



That’s because they discovered a physical link between apolipoprotein E (APOE), the transport molecules known to play a role in development of the disease, and glutamate, a brain chemical necessary for establishing human memory.

In a study published in the Journal of Biological Chemistry, the research team specifically found that receptors on the outside of brain nerve cells (neurons) that bind on to APOE and glutamate are connected on the surface of neurons, separated from each other by only a small protein.


While the researchers don’t know why these receptors are linked together, they say inefficient or higher-than-average levels of APOE in the brain could possibly be clogging these binding sites, preventing glutamate from activating the processes necessary to form memories.

“We have found out that two receptors previously thought to have nothing to do with each other do, in fact, interact, leading us to conclude that APOE affects the NMDA glutamate channel that is important in memory,” says the study’s senior author, G. William Rebeck, PhD, associate professor of neuroscience in Georgetown’s Biomedical Graduate Research Organization.

The researchers also hypothesize that this interaction might have something to do with development of Alzheimer’s disease, although they stress that at this early stage of research, this is impossible to prove.

Rebeck and first author Hyang-Sook Hoe, PhD, also of Georgetown, say that laboratory work now underway is attempting to unravel the relationship between APOE and NMDA receptors.

APOE is a protein that helps shuttle cholesterol and other non-soluble lipid particles around the body, moving these substances to where they are needed. All cells have receptors that bind on to APOE so that they can use lipids as needed, such as for quick energy, to store as fat for later use, or to repair wounds.

But researchers now know that APOE does more than distribute lipids, especially in the brain. About a decade ago, scientists linked APOE4, one of the three common forms of APOE, to development of Alzheimer’s disease, although the biological link between the protein and neurodegenerative diseases such as Alzheimer’s is not clear.

Based on recent research, Rebeck and others suspect that, in the brain, APOE also acts as a transporter, picking up lipids and perhaps other material that result from normal brain tissue wear and tear, or from trauma, and moving it to where it can be used or can be cleared away from the brain. Work in Rebeck’s lab found that APOE receptor 2 (ApoEr2), one of the eight different APOE receptor types, is crucial to both the development and operation of a normal brain.

Glutamate is a substance released at the synapse of neurons — the junction between one nerve cell and the next through which chemical messages are transmitted. Glutamate increases the strength of a synaptic response following stimulation. The NMDA glutamate receptor binds on to the drug NMDA, and also on to glutamate, an excitatory neurotransmitter that also stimulates nerve cell activity. Researchers know that the NMDA receptor is needed to produce the long-lasting synaptic response that is necessary in order to establish, or “lay down,” memory, Rebeck says. “The molecular basis of memory depends on NMDA receptor.”

In work leading up to this study, Rebeck and the research team found that adding APOE to neurons in laboratory culture blocked NMDA receptors. In this study, they confirmed through a series of experiments that the receptors for APOE and NMDA interacted, and that the protein that linked the two was PSD95, often found in neural synaptic junctions. Together, they form a multiprotein complex that could presumably be activated by either APOE, NMDA or glutamate.

Rebeck suspects that the APOE4 variant — the one linked to Alzheimer’s disease — is less efficient at removing lipid debris in the brain than is APOE2 or APOE3, and because of this, brain cells secrete more of the faulty protein to do the job. If too much APOE ends up binding to the APOE/NMDA receptor, one of two things could possibly happen, Rebeck says. In one scenario, the receptor becomes over-stimulated due to the accumulating presence of APOE, which could trigger a process called excitotoxicity that results in death of the neruons. Or, in the presence of damage and secreted APOE, the receptor “turns down” its activity — thus, hampering memory formation — until the brain is repaired. “Having damage around tells the brain not to think too much for awhile,” Rebeck says. But if APOE4 cannot clear up accumulating damage, the ability to make new memories, and use old ones, may be increasingly lost.

“This is, of course, speculation, but now we have new avenues in which we can explore the molecular basis of memory and possibly Alzheimer’s disease,” Rebeck says.

The study was funded by the NIH. Co-authors include Ana Pocivavsek and Geetaanjali Chakraborty also of the Department of Neuroscience, Zhanyan Fu, PhD, and Stefano Vicini, PhD, of the Department of Physiology and Biophysics at Georgetown University Medical Center, and Michael D. Ehlers, PhD, of Duke University Medical Center.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO).

Liz McDonald | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>