Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers assemble second non-human primate genome

10.02.2006


Rhesus macaque DNA sequence available in free, public databases



A multi-center team has deposited the draft genome sequence of the rhesus macaque monkey into free public databases for use by the worldwide research community, the National Human Genome Research Institute (NHGRI), one of the National Institutes of Health (NIH), announced today.

The rhesus macaque (Macaca mulatta) is the second non-human primate, after the chimpanzee (Pan troglodytes), to have its genome sequenced, and is the first of the Old World monkeys to have its DNA deciphered. Overall, the rhesus genome shares about 92 to 95 percent of its sequence with the human (Homo sapiens) and more than 98 percent with the chimpanzee. Consequently, the rhesus provides an ideal reference point for comparisons among the three closely related primates. Sequencing is also underway on the genomes of a number of other primates, including the orangutan, marmoset and gorilla.


The sequencing of the rhesus genome was conducted at the Baylor College of Medicine Human Genome Sequencing Center in Houston, the Genome Sequencing Center at Washington University in St. Louis and at the J. Craig Venter Institute in Rockville, Md., which are part of the NHGRI-supported Large-Scale Sequencing Research Network. The DNA samples used in the sequencing came from a female rhesus macaque at the Southwest Foundation for Biomedical Research in San Antonio.

Independent assemblies of the rhesus genome data were carried out at each of the three sequencing centers using different and complementary approaches. A team led by Granger Sutton, Ph.D., at the J. Craig Venter Institute, then joined the resulting data into a single, high-density draft, or "melded assembly." This collaborative venture also made use of existing resources: the reference sequence of the human genome, published rhesus DNA mapping resources and the rhesus DNA fingerprint database from the Michael Smith Genome Sciences Center at the British Columbia Cancer Agency in Vancouver. The new, high-quality assembly, which covers 93 percent of the rhesus genome, will enable researchers to make evolutionary comparisons and accurate gene predictions for this important organism.

Because of its genetic, physiologic and metabolic similarities with humans, the rhesus macaque is the major, non-human primate used for the study of human disease, and also serves as an important system in drug development. Rhesus macaques are used for essential research in neuroscience, behavioral biology, reproductive physiology, endocrinology and cardiovascular studies. In addition, due to its response to the simian immunodeficiency virus (SIV), the rhesus is widely recognized as the best animal model for human immunodeficiency virus (HIV) infection. It also serves as a valuable model for studying other human infectious diseases and for vaccine research.

The availability of the rhesus genome sequence will facilitate study in these areas by enabling researchers to build a list of rhesus genes, as well as a list of differences between the rhesus, the chimpanzee and humans. A group of scientists has been organized to speed more detailed analyses of the rhesus data.

The worldwide research community can access the sequence data through the following public databases and genome viewers: GenBank (http://www.ncbi.nih.gov/Genbank) and Map Viewer (http://www.ncbi.nlm.nih.gov/mapview/) at NIH’s National Center for Biotechnology Information (NCBI); EMBL Bank (www.ebi.ac.uk/embl/index.html) at the European Molecular Biology Laboratory’s Nucleotide Sequence Database; and the DNA Data Bank of Japan (www.ddbj.nig.ac.jp). The data can also be viewed through the UCSC Genome Browser (http://www.genome.ucsc.edu/) at the University of California at Santa Cruz and the Ensembl Genome Browser (www.ensembl.org) at the Wellcome Trust Sanger Institute in Cambridge, England. Additional information about the rhesus sequence is available through the Human Genome Sequence Center at Baylor College of Medicine (http://www.hgsc.bcm.tmc.edu/)

Geoff Spencer | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>