Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT professor discovers better way to desalinate water

10.02.2006


Chemical engineer Kamalesh Sirkar, PhD, a distinguished professor at New Jersey Institute of Technology (NJIT) and an expert in membrane separation technology, is leading a team of researchers to develop a breakthrough method to desalinate water. Sirkar, who holds more than 20 patents in the field of membrane separation, said that using his technology, engineers will be able to recover water from brines with the highest salt concentrations. The Bureau of Reclamation in the Department of Interior is funding the project.



"Our process will work especially well with brines holding salt concentrations above 5.5 percent," Sirkar said. Currently, 5.5 percent is the highest percentage of salt in brine that can be treated using reverse osmosis.

"We especially like our new process because we can fuel it with low grade, inexpensive waste heat," Sirkar said. "Cheap heat costs less, but can heat brine efficiently."


The science behind Sirkar’s membrane distillation process is simple. The inexpensive fuel heats the water forcing it to evaporate from the salt solution. The cleansed vapor then travels through nano-sized pore in the membrane to wind up condensed in the cold water on the membrane’s other side.

"The basic principles of membrane separation have been known for a long time," said Sirkar. "Intestines in animals and humans are semi-permeable membranes. Early experiments to study the process of separation were performed by chemists using samples of animal membranes."

Today, membrane separation processes depend on the design of the membrane and the membrane module. The size of the pores is often key to determining which molecular components in either a liquid or gas form will pass through the membrane. Typically molecules flow from a region of high to low concentration. Pressure or concentration differences on both sides of the membrane cause the actual separation to occur. As pore size decreases, the membrane’s efficiency and selectivity increases. Membrane separation processes are used in biomedical, biotechnology, chemical, food, petrochemical, pharmaceutical and water treatment industries to separate/purify/concentrate liquid solutions or cellular suspensions or gaseous mixtures.

Typically Sirkar works with miniscule membranes, smaller in size than nanometers. A nanometer is one billionth of a meter.

Sirkar has been leading the effort in membrane separations and biotechnology at NJIT since1992. He is the director for the Center for Membrane Technologies at NJIT and is the Foundation Professor of Membrane Separations. Sirkar has authored more than 140 peer-reviewed articles that have appeared in AIChE Journal, Biotechnology and Bioengineering,, Chemical Engineering Science, Industrial and Engineering Chemistry Research; Journal of Membrane Science; Polymer; Biotechnology Progress; Journal of American Chemical Society; Journal of Controlled Release and more. Sirkar graduated with a bachelor’s degree with honors in 1963 from the Indian Institute of Technology, Kharagpur, India. He received his master’s degree and his doctorate from the University of Illinois, Urbana.

Although Sirkar has no crystal ball, he envisions many future applications for his process. "Desalinating seawater to stimulate economic development and create potable water always has an attentive audience," he said.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>