Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT professor discovers better way to desalinate water

10.02.2006


Chemical engineer Kamalesh Sirkar, PhD, a distinguished professor at New Jersey Institute of Technology (NJIT) and an expert in membrane separation technology, is leading a team of researchers to develop a breakthrough method to desalinate water. Sirkar, who holds more than 20 patents in the field of membrane separation, said that using his technology, engineers will be able to recover water from brines with the highest salt concentrations. The Bureau of Reclamation in the Department of Interior is funding the project.



"Our process will work especially well with brines holding salt concentrations above 5.5 percent," Sirkar said. Currently, 5.5 percent is the highest percentage of salt in brine that can be treated using reverse osmosis.

"We especially like our new process because we can fuel it with low grade, inexpensive waste heat," Sirkar said. "Cheap heat costs less, but can heat brine efficiently."


The science behind Sirkar’s membrane distillation process is simple. The inexpensive fuel heats the water forcing it to evaporate from the salt solution. The cleansed vapor then travels through nano-sized pore in the membrane to wind up condensed in the cold water on the membrane’s other side.

"The basic principles of membrane separation have been known for a long time," said Sirkar. "Intestines in animals and humans are semi-permeable membranes. Early experiments to study the process of separation were performed by chemists using samples of animal membranes."

Today, membrane separation processes depend on the design of the membrane and the membrane module. The size of the pores is often key to determining which molecular components in either a liquid or gas form will pass through the membrane. Typically molecules flow from a region of high to low concentration. Pressure or concentration differences on both sides of the membrane cause the actual separation to occur. As pore size decreases, the membrane’s efficiency and selectivity increases. Membrane separation processes are used in biomedical, biotechnology, chemical, food, petrochemical, pharmaceutical and water treatment industries to separate/purify/concentrate liquid solutions or cellular suspensions or gaseous mixtures.

Typically Sirkar works with miniscule membranes, smaller in size than nanometers. A nanometer is one billionth of a meter.

Sirkar has been leading the effort in membrane separations and biotechnology at NJIT since1992. He is the director for the Center for Membrane Technologies at NJIT and is the Foundation Professor of Membrane Separations. Sirkar has authored more than 140 peer-reviewed articles that have appeared in AIChE Journal, Biotechnology and Bioengineering,, Chemical Engineering Science, Industrial and Engineering Chemistry Research; Journal of Membrane Science; Polymer; Biotechnology Progress; Journal of American Chemical Society; Journal of Controlled Release and more. Sirkar graduated with a bachelor’s degree with honors in 1963 from the Indian Institute of Technology, Kharagpur, India. He received his master’s degree and his doctorate from the University of Illinois, Urbana.

Although Sirkar has no crystal ball, he envisions many future applications for his process. "Desalinating seawater to stimulate economic development and create potable water always has an attentive audience," he said.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>