Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Veggies contain chemicals that boost DNA repair and protect against cancer

10.02.2006


Need another reason to eat your vegetables? New research shows that some of them contain chemicals that appear to enhance DNA repair in cells, which could lead to protection against cancer development, say Georgetown University Medical Center researchers.



In a study published in the British Journal of Cancer (published by the research journal Nature) the researchers show that in laboratory tests, a compound called indole-3-carinol (I3C), found in broccoli, cauliflower and cabbage, and a chemical called genistein, found in soy beans, can increase the levels of BRCA1 and BRCA2 proteins that repair damaged DNA.

Although the health benefits of eating your vegetables—especially cruciferous ones, such as broccoli—aren’t particularly new, this study is one of the first to provide a molecular explanation as to how eating vegetables could cut a person’s risk of developing cancer, an association that some population studies have found, says the study’s senior author, Eliot M. Rosen, MD, PhD, professor of oncology, cell biology, and radiation medicine at Georgetown’s Lombardi Comprehensive Cancer Center.


“It is now clear that the function of crucial cancer genes can be influenced by compounds in the things we eat,” Rosen says. “Our findings suggest a clear molecular process that would explain the connection between diet and cancer prevention.”

In this study, Rosen exposed breast and prostate cancer cells to increasing doses of 13C and genistein, and found that these chemicals boosted production of BRCA1, as well as its sister repair protein, BRCA2. Mutations in either of these genes can lead to development of breast, prostate and ovarian cancers.

Since decreased amounts of the BRCA proteins are seen in cancer cells, higher levels might prevent cancer from developing, Rosen says, adding that the ability of I3C and genistein to increase production of BRCA proteins could explain their protective effects.

The study was funded by the Susan G. Komen Breast Cancer Foundation and the National Cancer Institute and co-authors include Drs. Saijun Fan, MD, PhD, Qinghui Meng, MS, Karen Auborn, PhD, and Timothy Carter, PhD.

Dr. Rosen is available for interviews with the news media and may be contacted at 202-687-5100. For a copy of the study, go to http://www.nature.com/bjc.

About Lombardi Comprehensive Cancer Center

The Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 39 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington, DC, area. For more information, go to http://lombardi.georgetown.edu.

Laura Cavender | EurekAlert!
Further information:
http://www.nature.com/bjc
http://lombardi.georgetown.edu
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>