Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN researchers develop way to visualize synchronized interactions of nerve cells in the brain

10.02.2006


Researchers at the University of Minnesota Medical School and the Brain Sciences Center at the Minneapolis VA Medical Center have discovered a new way to assess how brain networks act together.



Work funded by the MIND Institute (New Mexico) led Apostolos P. Georgopoulos, M.D., Ph.D., professor of neuroscience, neurology, and psychiatry, and collaborators to a novel way to assess the dynamic interactions of brain networks acting in synchrony, as reported in a recent issue of the Proceedings of the National Academy of Sciences.

"This discovery will allow researchers to better evaluate the brain function of people with various diseases, such as Alzheimer’s disease, and to monitor the effect of treatment, by assessing the status of the brain networks over time," Georgopoulos said.


All behavior and cognition in the brain involves networks of nerves continuously interacting--these interactions occur on a millisecond by millisecond basis. Because the interactions in the brain happen so rapidly, it has been difficult to accurately assess them. Current methods of evaluation such as functional magnetic resonance imaging (fMRI) are too slow--they take seconds to detect activation.

To better evaluate how the nerve networks in the brain communicate and interact with one another, researchers used magnetoencephalography (MEG) to record, with 1- millisecond temporal resolution, tiny magnetic fields from the brain during a short period of time. They studied this interaction in research subjects who looked at a spot of light. Georgopoulos used MEG data from 248 sensors to detect the changing interactions over time. The measurements they recorded represent the workings of tens of thousands of brain cells.

The large amount of data recorded from each sensor was analyzed over time to view how large groups of active brain cells operate and interact simultaneously with each other in different parts of the brain.

Sara E. Buss | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>