Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How sperm crack the whip

10.02.2006


Researchers have identified a key component of the mechanism spermatozoa use to abruptly convert their tail motion from a steady swimming undulation to the whip-cracking snap that thrusts them into an egg. The finding opens a new research pathway that the researchers said could help scientists both recognize new forms of male infertility and design new contraceptives to thwart sperm entry into the egg.



What’s more, they said, the exquisitely delicate analytical technique they used to eavesdrop on the electrical currents inside the squirming sperm cell could literally open a new window into its largely mysterious inner workings.

Howard Hughes Medical Institute investigator David E. Clapham and his colleagues published their findings in the February 9, 2006, issue of the journal Nature. Lead author on the paper was Yuriy Kirichok and the other co-author was Betsy Navarro, both in Clapham’s laboratory at Harvard Medical School.


According to Clapham, it has long been known that a spermatozoa’s arrival in the alkaline environment of the female reproductive tract triggers its tail’s whiplike motion, called hyperactivation. In 2001, the researchers showed that a protein called CatSper1, found only in the sperm tail, was required for male fertility. Subsequently, with colleagues at the University of Washington and at the University of Texas Southwestern, CatSper was found to be required for hyperactivation. CatSper proteins are components of pores in the sperm cell membrane called ion channels. In an alkaline environment, these pores open and allow calcium to enter the cell.

In earlier experiments, the researchers had attempted to study the CatSper ion channel with a technique called patch clamp recording. In this widely used method of studying electrical activity in cells, a tiny hollow pipette is snugged tightly against the cell membrane. With gentle suction, the membrane is delicately ruptured, opening a window into the cell that allows measurement of its electrical properties, as well as introduction of chemicals to perturb those properties for study.

However, said Clapham, the constant wriggling of spermatozoa, as well as the way their tough membranes stretch tightly stretched over underlying structures, made the cells incompatible with this research technique.

"Back in 2001, we made more than a thousand attempts to patch clamp sperm without success," said Clapham. "We had been quite frustrated by it. However, Yuriy finally discovered a way to patch clamp the cells, which was central to the success reported in this paper." Basically, Kirichok found that he could patch clamp the pipette into a microscopic "cytoplasmic droplet" that is present in sperm before ejaculation, but is usually lost in mature sperm.

Patch clamp studies on spermatozoa with remnant cytoplasmic droplets revealed that CatSper1 was a major component of the calcium ion channel responsible for alkaline-activated hyperactivation and male fertility.

According to Clapham, the finding represents the beginning of an important new research pathway. "It’s like opening an chamber in an ancient pyramid, because no one had ever seen inside sperm cells to measure all the currents that control their activity," he said. "We are already measuring many of these currents and beginning to answer questions about what they are and what they do."

Further studies, said Clapham, will aim at exploring the many controlling currents inside sperm and also tracing how calcium triggers hyperactivation once it enters the cell. Such studies will enable exploration of sperm machinery from tail to head – analyzing processes ranging from tail motility to the mechanism by which the sperm head delivers its genetic payload to the egg, he said.

Such research could yield insight into some male infertility, said Clapham. Still-unidentified mutations in any of the four CatSper proteins – all of which are involved in motility – could underlie some forms of infertility, he said.

"Also, these proteins are good targets for contraception," he said. "We know that defects in CatSper1 block fertilization in mice. And since the channels in human sperm are very similar, there’s no reason to believe you couldn’t develop a male or female birth control pill that would block the protein before it functions to hyperactivate sperm, preventing fertilization," he said.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>