Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using particle measurements to pinpoint mould

09.02.2006


Locating mould and damp in buildings is difficult, sometimes even impossible. The Tekes’ Fine technology programme explores ways to use the concentration and size distribution of particles to pinpoint mould damage and determine its effect on health. Researchers are also developimg a DNA-based microchip, which can be used for determining the microbes in indoor air rapidly. This is the first experiment where existing medical technologies are being applied to indoor air specimens.



"Up to now, nobody has studied how the concentration and size distribution of particles in the air inside buildings with mould problems differ from those inside healthy buildings. We took measurements in a building with mould problems at all four seasons of the year and measured the effects of repairs on indoor air quality in two buildings", explains Dr. Aino Nevalainen from the National Public Health Institute, who has been leading the research.

"Measurements were also taken in healthy buildings for comparison. The air in the building with mould problems showed inexplicable peaks in particle concentrations that could be caused by damp and mould. Analysis is continuing in those areas."


Procedures for determining the microbiological particles in indoor air using DNA-based methods were also developed in the research. DNA-based measurements have shown that there are a number of microbes in the air, which previously have been impossible to even observe.

A DNA-based microchip is being developed, which can be used for determining the microbes in indoor air rapidly. This is the first experiment in which existing medical technologies are being applied to indoor air specimens.

Aino Nevalainen believes that the DNA chip will be in use for determining damp and mould hazards in 3-5 years’ time. There is a demand for the new technology throughout the world as Finland is not the only country engaged in fighting mould problems. In the USA, for example, the problem is difficult to control.

Breaking the mould in interdisciplinary research

"It is thanks to the Tekes Fine technology programme that we have been able to launch this multidisciplinary research project, where particle and microbe research is being carried out hand in hand. The results are ground-breaking," says Aino Nevalainen.

As well as the National Public Health Institute, the aerosol research conducted by the Department of Physical Sciences at the University of Helsinki and the Institute of Biotechnology are also involved in the research.

Eeva Ahola | alfa
Further information:
http://www.tekes.fi

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>