Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heparin prepared synthetically could replace animal-derived drug

08.02.2006


Researchers at Rensselaer Polytechnic Institute and University of North Carolina at Chapel Hill have discovered an alternative way to produce heparin, a drug commonly used to stop or prevent blood from clotting. The findings could enable the current supply of the drug – now extracted from animal tissue – to be replaced or supplemented by the synthetic version. The new process also can be applied as a tool for drug discovery, according to the researchers.



Heparin is a complex carbohydrate used to stop or prevent blood from clotting during medical procedures and treatments such as kidney dialysis, heart bypass surgery, stent implantation, indwelling catheters, knee and hip replacements, and deep vein thrombosis. The annual worldwide sales of heparin are estimated at $3 billion.

"We have synthetically prepared heparin in quantities large enough for use in human medical treatments by engineering recently discovered heparin biosynthetic enzymes," says Robert Linhardt, the Ann and John H. Broadbent Jr. ’59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer Polytechnic Institute. "These discoveries will enable us to effectively replace a variable raw material – heparin derived from processed animal organs – with a synthetic material – synthetic heparin – and have the same therapeutic result."


Research in Linhardt’s group at the Center for Biotechnology and Interdisciplinary Studies at Rensselaer focuses on complex carbohydrates such as heparin. After determining the structure of these molecules, researchers study their biological activities to establish a structure-activity relationship that may reveal lead compounds for new drug development.

Researchers at MIT first prepared a synthetic heparin, but, in amounts of less than 1 microgram, it was insufficient to treat humans, says Linhardt. One human dose of heparin is approximately 100 milligrams.

Rensselaer and UNC-Chapel Hill researchers successfully synthesized hundreds of milligrams of heparin by developing a large-scale process involving engineered enzymes and co-factor recycling. The new, scaleable process can be applied to synthesize other heparin-based structures that regulate cell growth and may have applications in wound healing or cancer treatment, according to the researchers. The findings were reported Dec. 30, 2005, in the Journal of Biological Chemistry in a paper titled "Enzymatic redesigning of biological active heparan sulfate."

The process also can be applied in solid phase synthesis as a tool for screening lead compounds with heparin-like structures for drug discovery, according to the researchers. The findings were published Jan. 13, 2006, in Biochemical and Biophysical Research Communication in a paper titled "Enzymatic synthesis of heparin related polysaccharides on sensor chips: Rapid screening of heparin-protein interactions."

Linhardt collaborated on the interdisciplinary project with Jian Liu, assistant professor of medicinal chemistry at University of North Carolina at Chapel Hill. Graduate and post-doctoral students involved in the work include: Jinghua Chen (UNC-Chapel Hill), Eva Munoz (Rensselaer), Fikri Avci (Rensselaer), Ding Xu (UNC-Chapel Hill), Melissa Kemp (Rensselaer), and Miao Chen (UNC-Chapel Hill). The work was supported by the National Institutes of Health and the American Heart Association. Rensselaer and UNC-Chapel Hill have jointly filed a provisional patent on the process.

Linhardt said additional research will seek to scale the process another million-fold to make it commercially viable.

Tiffany Lohwater | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>