Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heparin prepared synthetically could replace animal-derived drug

08.02.2006


Researchers at Rensselaer Polytechnic Institute and University of North Carolina at Chapel Hill have discovered an alternative way to produce heparin, a drug commonly used to stop or prevent blood from clotting. The findings could enable the current supply of the drug – now extracted from animal tissue – to be replaced or supplemented by the synthetic version. The new process also can be applied as a tool for drug discovery, according to the researchers.



Heparin is a complex carbohydrate used to stop or prevent blood from clotting during medical procedures and treatments such as kidney dialysis, heart bypass surgery, stent implantation, indwelling catheters, knee and hip replacements, and deep vein thrombosis. The annual worldwide sales of heparin are estimated at $3 billion.

"We have synthetically prepared heparin in quantities large enough for use in human medical treatments by engineering recently discovered heparin biosynthetic enzymes," says Robert Linhardt, the Ann and John H. Broadbent Jr. ’59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer Polytechnic Institute. "These discoveries will enable us to effectively replace a variable raw material – heparin derived from processed animal organs – with a synthetic material – synthetic heparin – and have the same therapeutic result."


Research in Linhardt’s group at the Center for Biotechnology and Interdisciplinary Studies at Rensselaer focuses on complex carbohydrates such as heparin. After determining the structure of these molecules, researchers study their biological activities to establish a structure-activity relationship that may reveal lead compounds for new drug development.

Researchers at MIT first prepared a synthetic heparin, but, in amounts of less than 1 microgram, it was insufficient to treat humans, says Linhardt. One human dose of heparin is approximately 100 milligrams.

Rensselaer and UNC-Chapel Hill researchers successfully synthesized hundreds of milligrams of heparin by developing a large-scale process involving engineered enzymes and co-factor recycling. The new, scaleable process can be applied to synthesize other heparin-based structures that regulate cell growth and may have applications in wound healing or cancer treatment, according to the researchers. The findings were reported Dec. 30, 2005, in the Journal of Biological Chemistry in a paper titled "Enzymatic redesigning of biological active heparan sulfate."

The process also can be applied in solid phase synthesis as a tool for screening lead compounds with heparin-like structures for drug discovery, according to the researchers. The findings were published Jan. 13, 2006, in Biochemical and Biophysical Research Communication in a paper titled "Enzymatic synthesis of heparin related polysaccharides on sensor chips: Rapid screening of heparin-protein interactions."

Linhardt collaborated on the interdisciplinary project with Jian Liu, assistant professor of medicinal chemistry at University of North Carolina at Chapel Hill. Graduate and post-doctoral students involved in the work include: Jinghua Chen (UNC-Chapel Hill), Eva Munoz (Rensselaer), Fikri Avci (Rensselaer), Ding Xu (UNC-Chapel Hill), Melissa Kemp (Rensselaer), and Miao Chen (UNC-Chapel Hill). The work was supported by the National Institutes of Health and the American Heart Association. Rensselaer and UNC-Chapel Hill have jointly filed a provisional patent on the process.

Linhardt said additional research will seek to scale the process another million-fold to make it commercially viable.

Tiffany Lohwater | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>