Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut protein found to protect against infection and intestinal breakdown

08.02.2006


A protein that binds to bile in the small intestine may hold the key to preventing infection and intestinal breakdown in people with conditions such as obstructive jaundice or irritable bowel syndrome, researchers at UT Southwestern Medical Center have discovered.



"What we’ve identified is one of the mechanisms for how the body keeps the number of bacteria low in the small intestine, and how it prevents them from getting into other organs," said Dr. Steven Kliewer, professor of molecular biology and the study’s senior author. The study is available this week online and in an upcoming issue of the Proceedings of the National Academy of Sciences.

B ile, which is generated by the liver and flows into the small intestine via a duct, contains harsh acids that help the body absorb nutrients, kill certain bacteria and help keep intact the lining of the intestine, a major barrier against the infiltration of infectious microorganisms. That’s no small task; if the innermost lining of the small intestine alone were unfolded, it would be the size of a tennis court.


When there’s no bile in the intestine, as happens in people with obstructive jaundice or in those who rely on feeding tubes for nourishment, the lining breaks down and bacteria pass through it into the body, sometimes causing the massive blood infection known as sepsis. Simply giving bile acids orally as a substitute isn’t a good solution because they can cause liver damage, Dr. Kliewer said.

The researchers focused on a molecule — FXR — in the wall of the lining, which binds to bile acids. When FXR was activated by a synthetic binding chemical called GW4064, it was found to activate several genes that are known to protect the intestinal lining or attack bacteria.

The research team also found that FXR molecules heavily lined the inside folds of the intestine in adult mice.
"It’s perfectly positioned," Dr. Kliewer said. "It’s expressed in just the right place to protect us from the environment."

When the bile ducts of mice were tied off, preventing bile from reaching the intestine, adding GW4064 prevented damage to the intestines, showing that it can replace bile in protecting the small intestine.

Genetically engineered mice that lacked FXR showed overall damage to the intestines, "strong evidence that this protein is crucial," Dr. Kliewer said. Drugs that bind to FXR, he said, could eventually become useful in treating various conditions of the small intestine.

Other UT Southwestern researchers involved in the study were Drs. Takeshi Inagaki and Guixiang Zhao, postdoctoral research fellows in molecular biology; Dr. Antonio Moschetta, postdoctoral research fellow in pharmacology and a research associate in the Howard Hughes Medical Institute; Youn-Kyoung Lee, student research assistant in molecular biology; Li Peng, senior research associate in molecular biology; John Shelton, senior research scientist in internal medicine; Dr. James Richardson, professor of pathology; Dr. Joyce Repa, assistant professor of physiology; and Dr. David Mangelsdorf, professor of pharmacology and biochemistry and an HHMI investigator. Drs. Ruth Yu and Michael Downes of the Salk Institute for Biological Studies in La Jolla, Calif., also participated in the study.

The work was supported by the National Institutes of Health, the HHMI and The Welch Foundation.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>