Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut protein found to protect against infection and intestinal breakdown

08.02.2006


A protein that binds to bile in the small intestine may hold the key to preventing infection and intestinal breakdown in people with conditions such as obstructive jaundice or irritable bowel syndrome, researchers at UT Southwestern Medical Center have discovered.



"What we’ve identified is one of the mechanisms for how the body keeps the number of bacteria low in the small intestine, and how it prevents them from getting into other organs," said Dr. Steven Kliewer, professor of molecular biology and the study’s senior author. The study is available this week online and in an upcoming issue of the Proceedings of the National Academy of Sciences.

B ile, which is generated by the liver and flows into the small intestine via a duct, contains harsh acids that help the body absorb nutrients, kill certain bacteria and help keep intact the lining of the intestine, a major barrier against the infiltration of infectious microorganisms. That’s no small task; if the innermost lining of the small intestine alone were unfolded, it would be the size of a tennis court.


When there’s no bile in the intestine, as happens in people with obstructive jaundice or in those who rely on feeding tubes for nourishment, the lining breaks down and bacteria pass through it into the body, sometimes causing the massive blood infection known as sepsis. Simply giving bile acids orally as a substitute isn’t a good solution because they can cause liver damage, Dr. Kliewer said.

The researchers focused on a molecule — FXR — in the wall of the lining, which binds to bile acids. When FXR was activated by a synthetic binding chemical called GW4064, it was found to activate several genes that are known to protect the intestinal lining or attack bacteria.

The research team also found that FXR molecules heavily lined the inside folds of the intestine in adult mice.
"It’s perfectly positioned," Dr. Kliewer said. "It’s expressed in just the right place to protect us from the environment."

When the bile ducts of mice were tied off, preventing bile from reaching the intestine, adding GW4064 prevented damage to the intestines, showing that it can replace bile in protecting the small intestine.

Genetically engineered mice that lacked FXR showed overall damage to the intestines, "strong evidence that this protein is crucial," Dr. Kliewer said. Drugs that bind to FXR, he said, could eventually become useful in treating various conditions of the small intestine.

Other UT Southwestern researchers involved in the study were Drs. Takeshi Inagaki and Guixiang Zhao, postdoctoral research fellows in molecular biology; Dr. Antonio Moschetta, postdoctoral research fellow in pharmacology and a research associate in the Howard Hughes Medical Institute; Youn-Kyoung Lee, student research assistant in molecular biology; Li Peng, senior research associate in molecular biology; John Shelton, senior research scientist in internal medicine; Dr. James Richardson, professor of pathology; Dr. Joyce Repa, assistant professor of physiology; and Dr. David Mangelsdorf, professor of pharmacology and biochemistry and an HHMI investigator. Drs. Ruth Yu and Michael Downes of the Salk Institute for Biological Studies in La Jolla, Calif., also participated in the study.

The work was supported by the National Institutes of Health, the HHMI and The Welch Foundation.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>