Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut protein found to protect against infection and intestinal breakdown

08.02.2006


A protein that binds to bile in the small intestine may hold the key to preventing infection and intestinal breakdown in people with conditions such as obstructive jaundice or irritable bowel syndrome, researchers at UT Southwestern Medical Center have discovered.



"What we’ve identified is one of the mechanisms for how the body keeps the number of bacteria low in the small intestine, and how it prevents them from getting into other organs," said Dr. Steven Kliewer, professor of molecular biology and the study’s senior author. The study is available this week online and in an upcoming issue of the Proceedings of the National Academy of Sciences.

B ile, which is generated by the liver and flows into the small intestine via a duct, contains harsh acids that help the body absorb nutrients, kill certain bacteria and help keep intact the lining of the intestine, a major barrier against the infiltration of infectious microorganisms. That’s no small task; if the innermost lining of the small intestine alone were unfolded, it would be the size of a tennis court.


When there’s no bile in the intestine, as happens in people with obstructive jaundice or in those who rely on feeding tubes for nourishment, the lining breaks down and bacteria pass through it into the body, sometimes causing the massive blood infection known as sepsis. Simply giving bile acids orally as a substitute isn’t a good solution because they can cause liver damage, Dr. Kliewer said.

The researchers focused on a molecule — FXR — in the wall of the lining, which binds to bile acids. When FXR was activated by a synthetic binding chemical called GW4064, it was found to activate several genes that are known to protect the intestinal lining or attack bacteria.

The research team also found that FXR molecules heavily lined the inside folds of the intestine in adult mice.
"It’s perfectly positioned," Dr. Kliewer said. "It’s expressed in just the right place to protect us from the environment."

When the bile ducts of mice were tied off, preventing bile from reaching the intestine, adding GW4064 prevented damage to the intestines, showing that it can replace bile in protecting the small intestine.

Genetically engineered mice that lacked FXR showed overall damage to the intestines, "strong evidence that this protein is crucial," Dr. Kliewer said. Drugs that bind to FXR, he said, could eventually become useful in treating various conditions of the small intestine.

Other UT Southwestern researchers involved in the study were Drs. Takeshi Inagaki and Guixiang Zhao, postdoctoral research fellows in molecular biology; Dr. Antonio Moschetta, postdoctoral research fellow in pharmacology and a research associate in the Howard Hughes Medical Institute; Youn-Kyoung Lee, student research assistant in molecular biology; Li Peng, senior research associate in molecular biology; John Shelton, senior research scientist in internal medicine; Dr. James Richardson, professor of pathology; Dr. Joyce Repa, assistant professor of physiology; and Dr. David Mangelsdorf, professor of pharmacology and biochemistry and an HHMI investigator. Drs. Ruth Yu and Michael Downes of the Salk Institute for Biological Studies in La Jolla, Calif., also participated in the study.

The work was supported by the National Institutes of Health, the HHMI and The Welch Foundation.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>