Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New images capture virus in extraordinary detail


Fifty years after MIT researchers pioneered the use of electron microscopy to study viruses, MIT scientists have helped produce the most detailed images yet of the tiny infectious agents .

The images, which show for the first time a virus poised to inject its genetic material into a host cell, grace the cover of the Feb. 2 issue of Nature.

Scientists have known for decades that viruses infect cells by injecting their genetic material, either DNA or RNA, into host cells, but even with electron microscopy, "we could never see the details of that aspect of it," said Jonathan King, an MIT professor of biology and one of the authors of the paper.

The researchers, led by Wen Jiang and Wah Chiu of the National Center for Macromolecular Imaging at Baylor College of Medicine, focused on viruses that infect bacteria, known as bacteriophages. Their paper diagrams the structure of a virus that infects Salmonella bacteria.

The photographs clearly show a long coil of DNA dangling inside the viral shell, waiting to be ejected via a protein channel just inside the shell exterior.

"Now you can see the end of the DNA. You can see the cylinder holding it, poised to go into the cell," said King.

To create the detailed images, the researchers photographed about 15,000 virus particles and ran them through a complex computer program that compared the photographs and constructed a 3-D model based on common features shared by the images.

The researchers also improved image quality by rapidly freezing the viruses before photographing them. The amorphous ice that forms as a result of the rapid freezing protects and preserves the virus structure, unlike regular crystallized ice, King said.

This project builds on a long legacy of viral research at MIT, King said. In 1969, MIT Professor Salvador Luria shared the Nobel Prize in physiology or medicine with Max Delbruck and Alfred Hershey for work on the genetic structure and replication mechanisms of viruses.

Luria, who came to MIT in 1959, was the first scientist to show the structure of bacteriophages.

"That really brought these bacterial viruses to the fore, and they’ve continued to be important for half a century," King said.

Bacteriophages were used in crucial experiments showing that DNA is the genetic material and determining that translation of genetic material into proteins is based on a triplet code.

Luria’s legacy at MIT’s biology department is carried on today, said King. Shortly after World War II, the Institute got one of the first electron microscopes in the United States, and Luria molded the direction of the department, said King, who arrived at MIT in 1970 after working with Delbruck at Caltech.

"It was (Luria’s) appointment that led to the department having its current character, which is a leader in molecular biology," King said.

MIT research scientist Peter Weigele is also an author on the imaging paper.

Funding for the imaging project was provided by the National Institutes of Health and the Robert Welch Foundation. The electron microscope images were taken at the National Center for Macromolecular Imaging at Baylor College of Medicine.

Elizabeth A. Thomson | MIT News Office
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>