Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computers spot shape clues

19.10.2001


Computer power is unravelling complex proteins.
© SPL


Two techniques may help deduce proteins’ functions.

Imagine trying to guess what machines do just be looking at them. Even a can-opener would pose problems, if you didn’t know about cans. This is the challenge that faces molecular biologists as they try to make sense of protein molecules in the cell.

Two new techniques may help. One deduces a protein’s function from its shape; the other deduces its shape from a list of component parts1,2.



Having read most of the human genome, researchers can, in principle, deduce a protein’s sequence - the chain of amino-acid building blocks of which it is made. In a functioning protein, this chain folds up in a particular three-dimensional way.

The first step in understanding a protein’s job is therefore to work out its shape. Predicting protein folding is, on the face of it, an enormous challenge. Most proteins contain dozens or hundreds of amino acids, so there is an astronomical number of ways in which these might be arranged into a compact, folded structure.

Fortunately, only a tiny fraction of these folds - perhaps a thousand - are found in natural proteins. The challenge is to deduce the best fit of a particular protein sequence to one of these folds. This is called the protein-threading problem.

Traditionally, the problem is tackled by assuming that each amino acid prefers to be surrounded by others of a specific kind, and then to look for the best compromise between the needs of all the amino acids. Success using this approach depends on how well we know what the amino acids prefer.

Instead of trying to deduce this from physical and chemical principles, Jayanth Banavar of Pennsylvania State University and colleagues use a set of known protein structures to train a computer program to recognize the preferences of each amino acid. Once trained, the program, a neural network, can then predict unknown structures.

This learning-based method is more successful than one based on a priori assumptions about amino-acid preferences, the researchers show. The network correctly predicted the structures of 190 out of 213 test proteins; the conventional approach got only 137 structures right.

Site construction

The next stage of the problem, going from structure to function, is what Mary Jo Ondrechen of Northeastern University in Boston, Massachusetts, and colleagues have looked at2. Most proteins are enzymes - they facilitate a chemical reaction. The priority of function hunters is to find the region where this transformation takes place, called the active site.

Many amino-acid groups in proteins can act as acids or bases - they can accept or release hydrogen ions. Usually this take-up or release is fairly abrupt as the acidity (pH) of the protein solution is altered - the amino acid switches from having the ion attached to being free of it over a narrow pH range.

Ondrechen’s team have found that amino acids at active sites don’t act in this simple way. Here, the behaviour of one unit affects that of the others.

A computer program that uses the known structure to predict how each amino acid in the protein sheds or acquires hydrogen ions when the pH is changed can spot this different behaviour of amino acids at active sites.

Anomalous behaviour, say the researchers, doesn’t necessarily indicate that an amino acid lies at the active site. But several such units close together are almost certainly indicators of the active site. The team says that their method could be automated to identify active sites rapidly - hopefully transforming a suite of protein structures into a list of their functions.


References

  1. Chang, I., Cieplak, M., Dima, R. I., Maritan, A. Banavar, J. R. Protein threading by learning. Proceedings of the National Academy of Sciences USA, in the press (2001).

  2. Ondrechen, M. J., Clifton, J. G. & Ringe, D. THEMATICS : a simple computational predictor of enzyme function from structure. Proceedings of the National Academy of Sciences USA, 98, 12473 - 2478, (2001).


PHILIP BALL | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-1.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>