Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computers spot shape clues

19.10.2001


Computer power is unravelling complex proteins.
© SPL


Two techniques may help deduce proteins’ functions.

Imagine trying to guess what machines do just be looking at them. Even a can-opener would pose problems, if you didn’t know about cans. This is the challenge that faces molecular biologists as they try to make sense of protein molecules in the cell.

Two new techniques may help. One deduces a protein’s function from its shape; the other deduces its shape from a list of component parts1,2.



Having read most of the human genome, researchers can, in principle, deduce a protein’s sequence - the chain of amino-acid building blocks of which it is made. In a functioning protein, this chain folds up in a particular three-dimensional way.

The first step in understanding a protein’s job is therefore to work out its shape. Predicting protein folding is, on the face of it, an enormous challenge. Most proteins contain dozens or hundreds of amino acids, so there is an astronomical number of ways in which these might be arranged into a compact, folded structure.

Fortunately, only a tiny fraction of these folds - perhaps a thousand - are found in natural proteins. The challenge is to deduce the best fit of a particular protein sequence to one of these folds. This is called the protein-threading problem.

Traditionally, the problem is tackled by assuming that each amino acid prefers to be surrounded by others of a specific kind, and then to look for the best compromise between the needs of all the amino acids. Success using this approach depends on how well we know what the amino acids prefer.

Instead of trying to deduce this from physical and chemical principles, Jayanth Banavar of Pennsylvania State University and colleagues use a set of known protein structures to train a computer program to recognize the preferences of each amino acid. Once trained, the program, a neural network, can then predict unknown structures.

This learning-based method is more successful than one based on a priori assumptions about amino-acid preferences, the researchers show. The network correctly predicted the structures of 190 out of 213 test proteins; the conventional approach got only 137 structures right.

Site construction

The next stage of the problem, going from structure to function, is what Mary Jo Ondrechen of Northeastern University in Boston, Massachusetts, and colleagues have looked at2. Most proteins are enzymes - they facilitate a chemical reaction. The priority of function hunters is to find the region where this transformation takes place, called the active site.

Many amino-acid groups in proteins can act as acids or bases - they can accept or release hydrogen ions. Usually this take-up or release is fairly abrupt as the acidity (pH) of the protein solution is altered - the amino acid switches from having the ion attached to being free of it over a narrow pH range.

Ondrechen’s team have found that amino acids at active sites don’t act in this simple way. Here, the behaviour of one unit affects that of the others.

A computer program that uses the known structure to predict how each amino acid in the protein sheds or acquires hydrogen ions when the pH is changed can spot this different behaviour of amino acids at active sites.

Anomalous behaviour, say the researchers, doesn’t necessarily indicate that an amino acid lies at the active site. But several such units close together are almost certainly indicators of the active site. The team says that their method could be automated to identify active sites rapidly - hopefully transforming a suite of protein structures into a list of their functions.


References

  1. Chang, I., Cieplak, M., Dima, R. I., Maritan, A. Banavar, J. R. Protein threading by learning. Proceedings of the National Academy of Sciences USA, in the press (2001).

  2. Ondrechen, M. J., Clifton, J. G. & Ringe, D. THEMATICS : a simple computational predictor of enzyme function from structure. Proceedings of the National Academy of Sciences USA, 98, 12473 - 2478, (2001).


PHILIP BALL | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-1.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>